Hyperspaces of nowhere topologically complete spaces
Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 35-51
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if $X$ is a connected locally continuumwise connected coanalytic nowhere topologically complete space, then the hyperspace $2^X$ of all nonempty compact subsets of $X$ is strongly universal in the class of all coanalytic spaces. Moreover, $2^X$ is homeomorphic to $\Pi_2$ if $X$ is a Baire space, and to $Q\setminus\Pi_1$ if $X$ contains a dense absolute $G_\delta$-set $G\subset X$ such that the intersection $G\cap U$ is connected for any open connected $U\subset X$. (Here $\Pi_1,\Pi_2\subset X$ are the standard subsets of the Hilbert cube $Q$ absorbing for the classes of analytic and coanalytic spaces, respectively.) Similar results are obtained for higher projective classes.
@article{MZM_1997_62_1_a3,
author = {T. O. Banakh and R. Cauty},
title = {Hyperspaces of nowhere topologically complete spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {35--51},
publisher = {mathdoc},
volume = {62},
number = {1},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a3/}
}
T. O. Banakh; R. Cauty. Hyperspaces of nowhere topologically complete spaces. Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 35-51. http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a3/