Hyperspaces of nowhere topologically complete spaces
Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 35-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if $X$ is a connected locally continuumwise connected coanalytic nowhere topologically complete space, then the hyperspace $2^X$ of all nonempty compact subsets of $X$ is strongly universal in the class of all coanalytic spaces. Moreover, $2^X$ is homeomorphic to $\Pi_2$ if $X$ is a Baire space, and to $Q\setminus\Pi_1$ if $X$ contains a dense absolute $G_\delta$-set $G\subset X$ such that the intersection $G\cap U$ is connected for any open connected $U\subset X$. (Here $\Pi_1,\Pi_2\subset X$ are the standard subsets of the Hilbert cube $Q$ absorbing for the classes of analytic and coanalytic spaces, respectively.) Similar results are obtained for higher projective classes.
@article{MZM_1997_62_1_a3,
     author = {T. O. Banakh and R. Cauty},
     title = {Hyperspaces of nowhere topologically complete spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {35--51},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a3/}
}
TY  - JOUR
AU  - T. O. Banakh
AU  - R. Cauty
TI  - Hyperspaces of nowhere topologically complete spaces
JO  - Matematičeskie zametki
PY  - 1997
SP  - 35
EP  - 51
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a3/
LA  - ru
ID  - MZM_1997_62_1_a3
ER  - 
%0 Journal Article
%A T. O. Banakh
%A R. Cauty
%T Hyperspaces of nowhere topologically complete spaces
%J Matematičeskie zametki
%D 1997
%P 35-51
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a3/
%G ru
%F MZM_1997_62_1_a3
T. O. Banakh; R. Cauty. Hyperspaces of nowhere topologically complete spaces. Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 35-51. http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a3/

[1] Wojdyslawski M., “Rétractes absolus et hyperespaces des continus”, Fund. Math., 32 (1939), 184–192 | Zbl

[2] Tashmetov U., “O svyaznosti i lokalnoi svyaznosti nekotorykh giperprostranstv”, Sib. matem. zh., 15:5 (1974), 1115–1130 | MR | Zbl

[3] Curtis D. W., Schori R. M., “Hyperspaces of Peano continua are Hilbert cubes”, Fund. Math., 101:1 (1978), 19–38 | MR | Zbl

[4] Curtis D. W., “Hyperspaces of noncompact metric spaces”, Compositio Math., 40 (1980), 139–152 | MR | Zbl

[5] Curtis D. W., “Hyperspaces homeomorphic to Hilbert space”, Proc. Amer. Math. Soc., 75 (1979), 126–130 | DOI | MR | Zbl

[6] Cauty R., “Ensembles absorbants pour les classes projectives”, Fund. Math., 143 (1993), 203–206 | MR | Zbl

[7] Banakh T., “Descriptive classes of sets and topological functors”, Ukr. matem. zh., 47 (1995), 408–411 | MR

[8] Toruńczyk H., “Concerning locally homotopy negligible sets and characterization of $\ell_2$-manifolds”, Fund. Math., 101 (1978), 93–110 | MR | Zbl

[9] Banakh T., Cauty R., “Interplay between strongly universal spaces and pairs”, Fund. Math. (to appear)

[10] Whyburn G. T., Analytic Topology, AMS, Providence, 1942 | Zbl

[11] Nadler S. B., Hyperspaces of sets, Marcel Dekker, New York, 1978 | Zbl

[12] Curtis D. W., Nhu N. T., “Hyperspaces of finite subsets which are homeomorphic to $\aleph_0$-dimensional linear metric spaces”, Topology Appl., 19:3 (1985), 251–260 | DOI | MR | Zbl

[13] Kuratowski C., Topologie, V. II, PWN, Warszawa, 1961

[14] Mardešić S., Uglešić N., “On irreductible mappings into polyhedra”, Topology Appl., 61 (1995), 187–203 | DOI | MR | Zbl

[15] Kuratowski C., Topologie, V. I, PWN, Warszawa, 1958

[16] Dobrowolski T., Marciszewski W., Mogilski J., “On topological classification of function spaces $C_p(X)$ of low Borel complexity”, Trans. Amer. Math. Soc., 328 (1991), 307–324 | DOI | MR | Zbl

[17] Engelen van F., Mill van J., “Borel sets in compact spaces: some Hurewicz type theorems”, Fund. Math., 124 (1984), 271–286 | MR | Zbl

[18] Bennett R., “Countable dense homogeneous spaces”, Fund. Math., 74 (1972), 189–194 | MR

[19] Engelking R., Obschaya topologiya, Mir, M., 1986

[20] Dranishnikov A. N., “Absolyutnye ekstenzory v razmernosti $n$ i $n$-myagkie otobrazheniya, povyshayuschie razmernost”, UMN, 39:5 (1984), 55–95 | MR | Zbl

[21] Hurewicz W., “Relative perfekte Teile von Punktmengen und Mengen (A)”, Fund. Math., 12 (1928), 78–109

[22] Baars J., Gladdines H., Mill van J., “Absorbing systems in infinite-dimensional manifolds”, Topology Appl., 50 (1993), 147–182 | DOI | MR | Zbl