Some properties of subexponential distributions
Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 138-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonnegative random variable $X$ is said to have a subexponential distribution if we have $\bigl(1-G(t)\bigr)\big/\bigl(1-F(t)\bigr)\to2$ as $t\to\infty$, where $F(t)=\mathsf P\{X\le t\}$ and $G(t)$ is the convolution of $F(t)$ with itself. Conditions on the distribution of independent nonnegative random variables $X$ and $Y$ such that $\max(X,Y)$ and $\min(X,Y)$ have a subexponential distribution are given.
@article{MZM_1997_62_1_a15,
     author = {A. L. Yakymiv},
     title = {Some properties of subexponential distributions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {138--144},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a15/}
}
TY  - JOUR
AU  - A. L. Yakymiv
TI  - Some properties of subexponential distributions
JO  - Matematičeskie zametki
PY  - 1997
SP  - 138
EP  - 144
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a15/
LA  - ru
ID  - MZM_1997_62_1_a15
ER  - 
%0 Journal Article
%A A. L. Yakymiv
%T Some properties of subexponential distributions
%J Matematičeskie zametki
%D 1997
%P 138-144
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a15/
%G ru
%F MZM_1997_62_1_a15
A. L. Yakymiv. Some properties of subexponential distributions. Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 138-144. http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a15/

[1] Chistyakov V. P., “Teorema o summakh nezavisimykh polozhitelnykh sluchainykh velichin i ee prilozheniya k vetvyaschimsya sluchainym protsessam”, Teor. veroyatnostei i ee primeneniya, 9:4 (1964), 710–718 | MR | Zbl

[2] Sgibnev M. S., “Asimptotika bezgranichno delimykh raspredelenii v $\mathbb R$”, Sib. matem. zh., 31:1 (1990), 135–140 | MR

[3] Chover J., Ney P., Wainger S., “Degeneracy properties of subcritical branching processes”, Ann. Probab., 1 (1973), 663–673 | DOI | MR | Zbl

[4] Teugels J. L., “The class of subexponential distributions”, Ann. Probab., 3 (1975), 1000–1011 | DOI | MR | Zbl

[5] Goldie C. M., “Subexponential distributions and dominated-variation tails”, J. Appl. Probab., 15 (1978), 440–442 | DOI | MR | Zbl

[6] Embrechts P., Goldie C. M., “On closure and factorisation properties of subexponential and related distributions”, J. Austral. Math. Soc., 29 (1980), 243–256 | DOI | MR | Zbl

[7] Cline D. B. H., “Convolution of distributions with exponential and subexponential tails”, J. Austral. Math. Soc., 93 (1987), 347–365 | DOI | MR

[8] Kluppelberg C., “Subexponential distributions and integrated tails”, J. Appl. Probab., 25 (1988), 132–141 | DOI | MR

[9] Leslie J. R., “On the non-closure under convolution of the subexponential family”, J. Appl. Probab., 26 (1989), 58–66 | DOI | MR | Zbl

[10] Yakymiv A. L., “Dostatochnye usloviya subeksponentsialnosti svertki dvukh raspredelenii”, Matem. zametki, 58:5 (1995), 778–781 | MR | Zbl