Counterexample to Peano's theorem in infinite-dimensional $F'$-spaces
Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 128-137

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a nonnormable Fréchet space, and let $E'$ be the space of all continuous linear functionals on $E$ in the strong topology. A continuous mapping $f\colon E'\to E'$ such that for any $t_0\in\mathbb R,x_0\in E'$, the Cauchy problem $\dot x=f(x)$, $x(t_0)=x_0$ has no solutions is constructed.
@article{MZM_1997_62_1_a14,
     author = {S. A. Shkarin},
     title = {Counterexample to {Peano's} theorem in infinite-dimensional $F'$-spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {128--137},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a14/}
}
TY  - JOUR
AU  - S. A. Shkarin
TI  - Counterexample to Peano's theorem in infinite-dimensional $F'$-spaces
JO  - Matematičeskie zametki
PY  - 1997
SP  - 128
EP  - 137
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a14/
LA  - ru
ID  - MZM_1997_62_1_a14
ER  - 
%0 Journal Article
%A S. A. Shkarin
%T Counterexample to Peano's theorem in infinite-dimensional $F'$-spaces
%J Matematičeskie zametki
%D 1997
%P 128-137
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a14/
%G ru
%F MZM_1997_62_1_a14
S. A. Shkarin. Counterexample to Peano's theorem in infinite-dimensional $F'$-spaces. Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 128-137. http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a14/