Counterexample to Peano's theorem in infinite-dimensional $F'$-spaces
Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 128-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a nonnormable Fréchet space, and let $E'$ be the space of all continuous linear functionals on $E$ in the strong topology. A continuous mapping $f\colon E'\to E'$ such that for any $t_0\in\mathbb R,x_0\in E'$, the Cauchy problem $\dot x=f(x)$, $x(t_0)=x_0$ has no solutions is constructed.
@article{MZM_1997_62_1_a14,
     author = {S. A. Shkarin},
     title = {Counterexample to {Peano's} theorem in infinite-dimensional $F'$-spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {128--137},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a14/}
}
TY  - JOUR
AU  - S. A. Shkarin
TI  - Counterexample to Peano's theorem in infinite-dimensional $F'$-spaces
JO  - Matematičeskie zametki
PY  - 1997
SP  - 128
EP  - 137
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a14/
LA  - ru
ID  - MZM_1997_62_1_a14
ER  - 
%0 Journal Article
%A S. A. Shkarin
%T Counterexample to Peano's theorem in infinite-dimensional $F'$-spaces
%J Matematičeskie zametki
%D 1997
%P 128-137
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a14/
%G ru
%F MZM_1997_62_1_a14
S. A. Shkarin. Counterexample to Peano's theorem in infinite-dimensional $F'$-spaces. Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 128-137. http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a14/

[1] Petrovskii I. G., Kurs obyknovennykh differentsialnykh uravnenii, Nauka, M., 1967 | Zbl

[2] Dieudonné J., “Deux exemples singuliers d'équations différentielles”, Acta Sci. Math. (Szeged), 12 (1950), 38–40 | MR | Zbl

[3] Yorke J. A., “A continuous differential equation in Hilbert space without existence”, Funkcial. Ekvac., 13 (1970), 19–21 | MR | Zbl

[4] Godunov A. N., “Kontrprimer k teoreme Peano v beskonechnomernom gilbertovom prostranstve”, Vestn. MGU. Ser. 1. Matem., mekh., 1972, no. 5, 19–21 | MR

[5] Godunov A. N., “Teorema Peano v beskonechnomernom gilbertovom prostranstve neverna dazhe v oslablennoi formulirovke”, Matem. zametki, 15:3 (1974), 467–477 | MR | Zbl

[6] Cellina A., “On the nonexistense of solution of differential equations in nonreflexive spaces”, Bull. Amer. Math. Soc., 78:6 (1972), 1069–1072 | DOI | MR | Zbl

[7] Godunov A. N., “O teoreme Peano v banakhovykh prostranstvakh”, Funktsionalnyi analiz i ego prilozh., 9:1 (1975), 59–60 | MR | Zbl

[8] Astala K., “On Peano's theorem in locally convex spaces”, Studia Math., 73 (1982), 213–223 | MR | Zbl

[9] Shkarin S. A., “Teorema Peano v beskonechnomernykh prostranstvakh Freshe neverna”, Funktsionalnyi analiz i ego prilozh., 27:2 (1993), 90–92 | MR | Zbl

[10] Lobanov S. G., “Obyknovennye differentsialnye uravneniya s nepreryvnoi pravoi chastyu v prostranstvakh Freshe”, Matem. zametki, 53:4 (1993), 77–91 | MR | Zbl

[11] Lobanov S. G., Smolyanov O. G., “Obyknovennye differentsialnye uravneniya v lokalno vypuklykh prostranstvakh”, UMN, 49:3 (1994), 93–168 | MR | Zbl

[12] Shkarin S. A., “O teoreme Peano v lokalno vypuklykh prostranstvakh”, Differents. uravneniya, 28:6 (1992), 1064

[13] Mickael E., “A selection theorem”, Proc. Amer. Math. Soc., 17:6 (1966), 1404–1406 | DOI | MR

[14] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | Zbl

[15] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971

[16] Engelking R., Obschaya topologiya, Mir, M., 1986

[17] Bonet J., Carreras P., Barrelled locally convex spaces, Stud. Math. Appl., 131, North-Holland, Amsterdam, 1987 | MR | Zbl

[18] Bessaga C., Pelczinsci A., Selected topics in infinite dimensional topology, Polish scientific publ., Warszawa, 1975 | Zbl

[19] Borges C. J. R., “Continuous extensions”, Proc. Amer. Math. Soc., 18:5 (1967), 874–878 | DOI | MR | Zbl

[20] Saint Raymond J., “Une équation différentielle sans solution”, Séminaire Initiation à l'Analyse, 20 année, no. 2, eds. G. Choquet, M. Rogalski, J. Saint Raymond, 1980/81, 7–12

[21] Lindenstrauss J., Tzafriri L., Classical Banach spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1977