A relationship between mixed discriminants and the joint spectrum of a family of commuting operators in finite-dimensional space
Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 3-9
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the properties of the polynomial operator pencil
$$
L(\lambda)=\sum_{i=0}^n\lambda^{n-i}M_i,\qquad
M_i\colon\mathscr H\to\mathscr H, \quad i=\overline{0,n},
$$
where $\mathscr H$ is a $k$-dimensional Hilbert space, and prove that the mixed discriminants $\{d_j\}_{j=0}^{nk}$, defined as the coefficients of the polynomial
$$
\det L(\lambda)=\sum_{j=0}^{nk}d_j\lambda^{nk-j},
$$
are completely determined by the joint spectrum of the family $\{M_i\}_{i=0}^n$. A generalization of Gershgorin's well-known theorem on the position of the eigenvalues of a matrix to the case of a polynomial matrix pencil is obtained.
@article{MZM_1997_62_1_a0,
author = {Yu. Ya. Agranovich and O. T. Azizova},
title = {A relationship between mixed discriminants and the joint spectrum of a family of commuting operators in finite-dimensional space},
journal = {Matemati\v{c}eskie zametki},
pages = {3--9},
publisher = {mathdoc},
volume = {62},
number = {1},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a0/}
}
TY - JOUR AU - Yu. Ya. Agranovich AU - O. T. Azizova TI - A relationship between mixed discriminants and the joint spectrum of a family of commuting operators in finite-dimensional space JO - Matematičeskie zametki PY - 1997 SP - 3 EP - 9 VL - 62 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a0/ LA - ru ID - MZM_1997_62_1_a0 ER -
%0 Journal Article %A Yu. Ya. Agranovich %A O. T. Azizova %T A relationship between mixed discriminants and the joint spectrum of a family of commuting operators in finite-dimensional space %J Matematičeskie zametki %D 1997 %P 3-9 %V 62 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a0/ %G ru %F MZM_1997_62_1_a0
Yu. Ya. Agranovich; O. T. Azizova. A relationship between mixed discriminants and the joint spectrum of a family of commuting operators in finite-dimensional space. Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a0/