A relationship between mixed discriminants and the joint spectrum of a family of commuting operators in finite-dimensional space
Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the properties of the polynomial operator pencil $$ L(\lambda)=\sum_{i=0}^n\lambda^{n-i}M_i,\qquad M_i\colon\mathscr H\to\mathscr H, \quad i=\overline{0,n}, $$ where $\mathscr H$ is a $k$-dimensional Hilbert space, and prove that the mixed discriminants $\{d_j\}_{j=0}^{nk}$, defined as the coefficients of the polynomial $$ \det L(\lambda)=\sum_{j=0}^{nk}d_j\lambda^{nk-j}, $$ are completely determined by the joint spectrum of the family $\{M_i\}_{i=0}^n$. A generalization of Gershgorin's well-known theorem on the position of the eigenvalues of a matrix to the case of a polynomial matrix pencil is obtained.
@article{MZM_1997_62_1_a0,
     author = {Yu. Ya. Agranovich and O. T. Azizova},
     title = {A relationship between mixed discriminants and the joint spectrum of a family of commuting operators in finite-dimensional space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a0/}
}
TY  - JOUR
AU  - Yu. Ya. Agranovich
AU  - O. T. Azizova
TI  - A relationship between mixed discriminants and the joint spectrum of a family of commuting operators in finite-dimensional space
JO  - Matematičeskie zametki
PY  - 1997
SP  - 3
EP  - 9
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a0/
LA  - ru
ID  - MZM_1997_62_1_a0
ER  - 
%0 Journal Article
%A Yu. Ya. Agranovich
%A O. T. Azizova
%T A relationship between mixed discriminants and the joint spectrum of a family of commuting operators in finite-dimensional space
%J Matematičeskie zametki
%D 1997
%P 3-9
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a0/
%G ru
%F MZM_1997_62_1_a0
Yu. Ya. Agranovich; O. T. Azizova. A relationship between mixed discriminants and the joint spectrum of a family of commuting operators in finite-dimensional space. Matematičeskie zametki, Tome 62 (1997) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/MZM_1997_62_1_a0/

[1] Aleksandrov A. D., “K teorii smeshannykh ob'emov vypuklykh tel. IV. Smeshannye diskriminanty i smeshannye ob'emy”, Matem. sb., 3(45):2 (1938), 227–251 | Zbl

[2] Agranovich Yu. Ya., Sukhochëva L. I., “O sobstvennykh znacheniyakh polinomialnykh matrichnykh puchkov”, Spektralnye i evolyutsionnye zadachi, Naukova dumka, Kiev, 1991, 23

[3] Parodi M., Lokalizatsiya kharakteristicheskikh chisel matrits i ee primeneniya, IL, M., 1960

[4] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972

[5] Glazman I. M., Lyubich Yu. L., Konechnomernyi lineinyi analiz, Nauka, M., 1969 | Zbl

[6] Lyubich Yu. L., “Lineinyi funktsionalnyi analiz”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 19, VINITI, M., 1988, 5–305 | MR

[7] Danford N., Shvarts Dzh., Lineinye operatory. Spektralnye operatory, Mir, M., 1974

[8] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989

[9] Elsner L., “On the variation of the spectra of matrices”, Linear Algebra Appl., 47 (1982), 127–138 | DOI | MR | Zbl