Separatrix splitting from the point of view of symplectic geometry
Matematičeskie zametki, Tome 61 (1997) no. 6, pp. 890-906.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generally, the invariant Lagrangian manifolds (stable and unstable separatrices) asymptotic with respect to a hyperbolic torus of a Hamiltonian system do not coincide. This phenomenon is called separatrix splitting. In this paper, a symplectic invariant qualitatively describing separatrix splitting for hyperbolic tori of maximum (smaller by one than the number of degrees of freedom) dimension is constructed. The construction resembles that of the homoclinic invariant found by Lazutkin for two-dimensional symplectic maps and of Bolotin's invariant for splitting of asymptotic manifolds of a fixed point of a symplectic diffeomorphism.
@article{MZM_1997_61_6_a9,
     author = {D. V. Treschev},
     title = {Separatrix splitting from the point of view of symplectic geometry},
     journal = {Matemati\v{c}eskie zametki},
     pages = {890--906},
     publisher = {mathdoc},
     volume = {61},
     number = {6},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a9/}
}
TY  - JOUR
AU  - D. V. Treschev
TI  - Separatrix splitting from the point of view of symplectic geometry
JO  - Matematičeskie zametki
PY  - 1997
SP  - 890
EP  - 906
VL  - 61
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a9/
LA  - ru
ID  - MZM_1997_61_6_a9
ER  - 
%0 Journal Article
%A D. V. Treschev
%T Separatrix splitting from the point of view of symplectic geometry
%J Matematičeskie zametki
%D 1997
%P 890-906
%V 61
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a9/
%G ru
%F MZM_1997_61_6_a9
D. V. Treschev. Separatrix splitting from the point of view of symplectic geometry. Matematičeskie zametki, Tome 61 (1997) no. 6, pp. 890-906. http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a9/

[1] Puankare A., Novye metody nebesnoi mekhaniki, T. 1–3; Избр. труды, Т. 1, 1971; Т. 2, Наука, М., 1972

[2] Holmes P. J., Marsden J. E., “Melnikov's method and Arnold diffusion of perturbations of integrable systems”, J. Math. Phys., 23:4 (1982), 669–675 | DOI | MR | Zbl

[3] Wiggins S., Global bifurcations and chaos. Analytical methods, Appl. Math. Sci., Springer-Verlag, Berlin–New York, 1988 | Zbl

[4] Bolotin S. V., “Uslovie integriruemosti po Liuvillyu gamiltonovykh sistem”, Vestn. MGU. Ser. 1. Matem., mekh., 1986, no. 3, 58–64 | MR

[5] Treshev D., “Hyperbolic tori and asymptotic surfaces in Hamiltonian systems”, Russian J. Math. Phys., 2:1 (1994), 93–110 | MR | Zbl

[6] Lazutkin V., Svanidze N. V., Gelfreich V. G., “Refined formula to separatrix splitting for the standard map”, Phys. Rev. D, 71:2 (1994), 101–131

[7] Graff S. M., “On the conservation of hyperbolic tori for Hamiltonian systems”, J. Differential Equations, 15:1 (1974), 1–69 | DOI | MR | Zbl

[8] Zehnder E., “Generalized implicit function theorems with applications to some small divisor problems. I; II”, Comm. Pure Appl. Math., 28:1 (1975), 91–140 ; Comm. Pure Appl. Math., 29:1 (1976), 49–111 | MR | Zbl | DOI | MR | Zbl

[9] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974

[10] Jorba A., Simo C., “On the reducibility of linear differential equations with quasiperiodic coefficients”, J. Differential Equations, 98 (1992), 111–124 | DOI | MR | Zbl

[11] Jorba A., Simo C., “On quasiperiodic perturbations of elliptic equilibrium points”, CIAM J. Math. Anal. (to appear)