A general class of inequalities with mixed means
Matematičeskie zametki, Tome 61 (1997) no. 6, pp. 864-872.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose $(T,\Sigma,\mu)$ is a space with positive measure, $f\colon\mathbb R\to\mathbb R$ is a strictly monotone continuous function, and $\mathfrak G(T)$ is the set of real $\mu$-measurable functions on $T$. Let $x(\cdot)\in\mathfrak G(T)$ and $(f\circ x)(\cdot)\in L_1(T,\mu)$. Comparison theorems are proved for the means $\mathfrak M_{(T,\mu,f)}\bigl (x(\cdot)\bigr)$ and the mixed means $\mathfrak M_{(T_1,\mu _1,f_1)}\bigl(\mathfrak M_{(T_2,\mu_2,f_2)}\bigl(x(\cdot)\bigr)\bigr)$ these inequalities imply analogs and generalizations of some classical inequalities, namely those of Hölder, Minkowski, Bellman, Pearson, Godunova and Levin, Steffensen, Marshall and Olkin, and others. These results are a continuation of the author's studies.
@article{MZM_1997_61_6_a6,
     author = {R. Kh. Sadikova},
     title = {A general class of inequalities with mixed means},
     journal = {Matemati\v{c}eskie zametki},
     pages = {864--872},
     publisher = {mathdoc},
     volume = {61},
     number = {6},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a6/}
}
TY  - JOUR
AU  - R. Kh. Sadikova
TI  - A general class of inequalities with mixed means
JO  - Matematičeskie zametki
PY  - 1997
SP  - 864
EP  - 872
VL  - 61
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a6/
LA  - ru
ID  - MZM_1997_61_6_a6
ER  - 
%0 Journal Article
%A R. Kh. Sadikova
%T A general class of inequalities with mixed means
%J Matematičeskie zametki
%D 1997
%P 864-872
%V 61
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a6/
%G ru
%F MZM_1997_61_6_a6
R. Kh. Sadikova. A general class of inequalities with mixed means. Matematičeskie zametki, Tome 61 (1997) no. 6, pp. 864-872. http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a6/

[1] Khardi G., Littlvud Dzh., Polia G., Neravenstva, IL, M., 1948

[2] Bellman R., Bekenbakh E., Neravenstva, Mir, M., 1965

[3] Godunova E. K., Neravenstva s vypuklymi funktsiyami, Diss. ... k. f.-m. n., MGPI, M., 1965

[4] Godunova E. K., Levin V. I., “Obschii klass neravenstv, soderzhaschii neravenstvo Steffensena”, Matem. zametki, 3:3 (1968), 339–344 | MR

[5] Pecaric J., “On the Bellman generalization of Steffensen's inequality”, J. Math. Anal. Appl., 88:2 (1982), 505–507 | DOI | MR | Zbl

[6] Steffensen J., “Bounds of certain trigonometric integrals”, 10th Scandinavian Math. Congress, 1945, 181–186

[7] Marshall A., Olkin I., Neravenstva: teoriya mazhoratsii i ee prilozheniya, Mir, M., 1983 | Zbl

[8] Sadikova R. Kh., “Obschii klass neravenstv, soderzhaschii neravenstvo Steffensena i ego obobscheniya”, Izv. vuzov. Matem., 1980, no. 4, 79–80 | MR | Zbl

[9] Sadikova R. Kh., Neravenstva s obobschennymi srednimi, Dep. Izv. vuzov. Matem., No 1456, 1981

[10] Sadikova R. Kh., Obschii klass neravenstv s obobschennymi srednimi, Dep. Izv. vuzov. Matem., No 2631-84, Dep. Izv. vuzov. Matem., 1983

[11] Sadikova R. Kh., Obschii klass neravenstv s tochnymi konstantami, Diss. ... k. f.-m. n., Universitet druzhby narodov, M., 1990

[12] Sadikova R. Kh., Sravnenie smeshannykh obobschennykh srednikh, Dep. Izv. vuzov. Matem., No 3439, 1975

[13] Shisha O., Cargo G., “On comparable means”, Pacif. J. Math., 4:3 (1964), 1053–1059 | MR

[14] Cooper R., “Notes on certain inequalities. I; II”, J. London Math. Soc., 1927, no. 2, 17–21 | DOI