Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_61_6_a10, author = {A. A. Tuzhilin}, title = {Minimal binary trees with a regular boundary: {The} case of skeletons with five endpoints}, journal = {Matemati\v{c}eskie zametki}, pages = {907--921}, publisher = {mathdoc}, volume = {61}, number = {6}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a10/} }
A. A. Tuzhilin. Minimal binary trees with a regular boundary: The case of skeletons with five endpoints. Matematičeskie zametki, Tome 61 (1997) no. 6, pp. 907-921. http://geodesic.mathdoc.fr/item/MZM_1997_61_6_a10/
[1] Ivanov A. O., Tuzhilin A. A., “The Steiner problem for convex boundaries. II: The regular case”, Adv. Soviet Math., 15 (1993), 93–131 | Zbl
[2] Tuzhilin A. A., “Minimalnye binarnye derevya s pravilnoi granitsei: sluchai skeletov s chetyrmya kontsami”, Matem. sb., 187:4 (1996), 117–159 | MR | Zbl
[3] Hwang F. K., Richards D., Winter P., The Steiner Tree Problem, Annals of Discrete Mathematics, 53, North-Holland, Amsterdam, 1992 | Zbl
[4] Jarnik V., Kössler M., “O minimalnich grafeth obeahujicich n danijch bodu”, Cas. Pest. Mat. Fys., 63 (1934), 223–235 | Zbl
[5] Melzak Z. A., “On the problem of Steiner”, Canad. Math. Bull., 4 (1960), 143–148 | MR
[6] Garey M. R., Graham R. L., Johnson D. S., “Some NP-complete geometric problems”, 8th Annual ACM Symposium on Theory of Computating, Assoc. Comput. Mach., New York, 1976, 10–22 | MR
[7] Preparata F., Shamos M., Computational geometry. An introduction, Springer-Verlag, New York, 1985
[8] Ivanov A. O., Tuzhilin A. A., “Reshenie zadachi Shteinera dlya vypuklykh granits”, UMN, 45:2 (1990), 207–208 | Zbl
[9] Ivanov A. O., Tuzhilin A. A., “Zadacha Shteinera dlya vypuklykh granits ili ploskie minimalnye seti”, Matem. sb., 182:12 (1991), 1813–1844
[10] Ivanov A. O., Tuzhilin A. A., “Geometriya minimalnykh setei i odnomernaya problema Plato”, UMN, 47:2 (284) (1992), 53–115 | MR | Zbl
[11] Ivanov A. O., Tuzhilin A. A., “The Steiner problem for convex boundaries. I: General case”, Adv. Soviet Math., 15 (1993), 15–92 | Zbl
[12] Ivanov A. O., Tuzhilin A. A., Minimal networks. The Steiner problem and its generalizations, CRC Press, N. W., Boca Raton, Florida, 1994 | Zbl
[13] Ivanov A. O., Tuzhilin A. A., “Topologii lokalno minimalnykh ploskikh binarnykh derevev”, UMN, 49:6 (1994), 191–192 | MR | Zbl
[14] Ivanov A. O., Tuzhilin A. A., “Vzveshennye minimalnye 2-derevya”, UMN, 50:3 (1995), 155–156 | MR | Zbl