The sum of coefficients of bounded univalent functions
Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 728-733
Cet article a éte moissonné depuis la source Math-Net.Ru
We solve the maximal value problem for the functional $\operatorname{Re}\sum_{j=1}^ma_{k_j}$ in the class of functions $f(z)=z+a_2z^2+\dotsb$ that are holomorphic and univalent in the unit disk and satisfy the inequality $|f(z)|. We prove that the Pick functions are extremal for this problem for sufficiently large $M$ whenever the set of indices $k_1,\dots,k_m$ contains an even number.
@article{MZM_1997_61_5_a9,
author = {D. V. Prokhorov},
title = {The sum of coefficients of bounded univalent functions},
journal = {Matemati\v{c}eskie zametki},
pages = {728--733},
year = {1997},
volume = {61},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a9/}
}
D. V. Prokhorov. The sum of coefficients of bounded univalent functions. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 728-733. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a9/
[1] Prokhorov D. V., “Even coefficient estimates for bounded univalent functions”, Ann. Polon. Math., 58:3 (1993), 267–273 | MR | Zbl
[2] Prokhorov D. V., “Mnozhestva znachenii sistem funktsionalov v klassakh odnolistnykh funktsii”, Matem. sb., 181:12 (1990), 1659–1677
[3] Bshouty D., “A coefficient problem of Bombieri concerning univalent functions”, Proc. Amer. Math. Soc., 91:3 (1984), 383–388 | DOI | MR | Zbl