Continuation of a linear operator to an involution operator
Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 671-676
Cet article a éte moissonné depuis la source Math-Net.Ru
A bounded linear operator $A\colon X\to X$ in a linear topological space $X$ is called a $p$-involution operator, $p\ge2$, if $A^p=I$, where $I$ is the identity operator. In this paper, we describe linear $p$-involution operators in a linear topological space over the field $\mathbb C$ and prove that linear operators can be continued to involution operators.
@article{MZM_1997_61_5_a3,
author = {M. I. Kadets and K. \`E. Kaibkhanov},
title = {Continuation of a~linear operator to an involution operator},
journal = {Matemati\v{c}eskie zametki},
pages = {671--676},
year = {1997},
volume = {61},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a3/}
}
M. I. Kadets; K. È. Kaibkhanov. Continuation of a linear operator to an involution operator. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 671-676. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a3/
[1] Lindenstrauss J., Tzafriri L., Classical Banach Spaces. I. Sequence Spaces, Springer, Berlin, 1977