Continuation of a~linear operator to an involution operator
Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 671-676.

Voir la notice de l'article provenant de la source Math-Net.Ru

A bounded linear operator $A\colon X\to X$ in a linear topological space $X$ is called a $p$-involution operator, $p\ge2$, if $A^p=I$, where $I$ is the identity operator. In this paper, we describe linear $p$-involution operators in a linear topological space over the field $\mathbb C$ and prove that linear operators can be continued to involution operators.
@article{MZM_1997_61_5_a3,
     author = {M. I. Kadets and K. \`E. Kaibkhanov},
     title = {Continuation of a~linear operator to an involution operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {671--676},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a3/}
}
TY  - JOUR
AU  - M. I. Kadets
AU  - K. È. Kaibkhanov
TI  - Continuation of a~linear operator to an involution operator
JO  - Matematičeskie zametki
PY  - 1997
SP  - 671
EP  - 676
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a3/
LA  - ru
ID  - MZM_1997_61_5_a3
ER  - 
%0 Journal Article
%A M. I. Kadets
%A K. È. Kaibkhanov
%T Continuation of a~linear operator to an involution operator
%J Matematičeskie zametki
%D 1997
%P 671-676
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a3/
%G ru
%F MZM_1997_61_5_a3
M. I. Kadets; K. È. Kaibkhanov. Continuation of a~linear operator to an involution operator. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 671-676. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a3/

[1] Lindenstrauss J., Tzafriri L., Classical Banach Spaces. I. Sequence Spaces, Springer, Berlin, 1977