Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_61_5_a13, author = {A. V. Filinovskii}, title = {Integral estimates of the solutions to the {Helmholtz} equation in unbounded domains}, journal = {Matemati\v{c}eskie zametki}, pages = {759--768}, publisher = {mathdoc}, volume = {61}, number = {5}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a13/} }
A. V. Filinovskii. Integral estimates of the solutions to the Helmholtz equation in unbounded domains. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 759-768. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a13/
[1] Rellich F., “Über das asymptotische Verhalten der Lösungen von $\Delta u+\lambda u=0$ in unendlichen Gebieten”, Jahresber. Deutsch. Math.-Verein, 53:1 (1943), 57–65 | MR | Zbl
[2] Odeh F. M., “Uniqueness theorems for Helmholtz equation in domains with infinite boundaries”, J. Math. Mech., 12:6 (1963), 857–867 | MR | Zbl
[3] Ramm A. G., “Spektralnye svoistva operatora Shredingera v oblastyakh s beskonechnoi granitsei”, Matem. sb., 66 (108):3 (1965), 321–343 | MR | Zbl
[4] Tayoshi T., “The asymptotic behaviour of the solutions of $(\Delta+\lambda)u=0$ in domains with the unbounded boundary”, Publ. Res. Inst. Math. Sci., 8:2 (1972), 375–391 | DOI | MR | Zbl
[5] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnaya teoriya. Samosopryazhennye operatory v gilbertovom prostranstve, T. 2, Mir, M., 1966
[6] Glazman I. M., “O kharaktere spektra mnogomernykh singulyarnykh kraevykh zadach”, Dokl. AN SSSR, 87:2 (1952), 171–174 | MR | Zbl