Integral estimates of the solutions to the Helmholtz equation in unbounded domains
Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 759-768
Voir la notice de l'article provenant de la source Math-Net.Ru
The following boundary value problem is studied:
$$
\begin{gathered}
\Delta v+\omega^2v=h(x),\qquad x\in\Omega\subset{\mathbb R}^n,\quad
n\ge2,\qquad-\infty\omega+\infty, \quad v|_\Gamma=0,\quad\Gamma=\partial\Omega,
\end{gathered}
$$
here the surface $\Gamma$ satisfies the condition $\bigl(\nu,\nabla\varphi(x)\bigr)\bigr|_\Gamma\le0$, where
$$
\varphi(x)=\sum_{j=1}^n\alpha_jx_j^2,\qquad 0\alpha_1\le\alpha_1\le\dots\le\alpha_n=1,
$$
and $\nu$ is the outward (with respect to $\Omega$) normal to $\Gamma$.
@article{MZM_1997_61_5_a13,
author = {A. V. Filinovskii},
title = {Integral estimates of the solutions to the {Helmholtz} equation in unbounded domains},
journal = {Matemati\v{c}eskie zametki},
pages = {759--768},
publisher = {mathdoc},
volume = {61},
number = {5},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a13/}
}
A. V. Filinovskii. Integral estimates of the solutions to the Helmholtz equation in unbounded domains. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 759-768. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a13/