Integral estimates of the solutions to the Helmholtz equation in unbounded domains
Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 759-768.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following boundary value problem is studied: $$ \begin{gathered} \Delta v+\omega^2v=h(x),\qquad x\in\Omega\subset{\mathbb R}^n,\quad n\ge2,\qquad-\infty\omega+\infty, \quad v|_\Gamma=0,\quad\Gamma=\partial\Omega, \end{gathered} $$ here the surface $\Gamma$ satisfies the condition $\bigl(\nu,\nabla\varphi(x)\bigr)\bigr|_\Gamma\le0$, where $$ \varphi(x)=\sum_{j=1}^n\alpha_jx_j^2,\qquad 0\alpha_1\le\alpha_1\le\dots\le\alpha_n=1, $$ and $\nu$ is the outward (with respect to $\Omega$) normal to $\Gamma$.
@article{MZM_1997_61_5_a13,
     author = {A. V. Filinovskii},
     title = {Integral estimates of the solutions to the {Helmholtz} equation in unbounded domains},
     journal = {Matemati\v{c}eskie zametki},
     pages = {759--768},
     publisher = {mathdoc},
     volume = {61},
     number = {5},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a13/}
}
TY  - JOUR
AU  - A. V. Filinovskii
TI  - Integral estimates of the solutions to the Helmholtz equation in unbounded domains
JO  - Matematičeskie zametki
PY  - 1997
SP  - 759
EP  - 768
VL  - 61
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a13/
LA  - ru
ID  - MZM_1997_61_5_a13
ER  - 
%0 Journal Article
%A A. V. Filinovskii
%T Integral estimates of the solutions to the Helmholtz equation in unbounded domains
%J Matematičeskie zametki
%D 1997
%P 759-768
%V 61
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a13/
%G ru
%F MZM_1997_61_5_a13
A. V. Filinovskii. Integral estimates of the solutions to the Helmholtz equation in unbounded domains. Matematičeskie zametki, Tome 61 (1997) no. 5, pp. 759-768. http://geodesic.mathdoc.fr/item/MZM_1997_61_5_a13/

[1] Rellich F., “Über das asymptotische Verhalten der Lösungen von $\Delta u+\lambda u=0$ in unendlichen Gebieten”, Jahresber. Deutsch. Math.-Verein, 53:1 (1943), 57–65 | MR | Zbl

[2] Odeh F. M., “Uniqueness theorems for Helmholtz equation in domains with infinite boundaries”, J. Math. Mech., 12:6 (1963), 857–867 | MR | Zbl

[3] Ramm A. G., “Spektralnye svoistva operatora Shredingera v oblastyakh s beskonechnoi granitsei”, Matem. sb., 66 (108):3 (1965), 321–343 | MR | Zbl

[4] Tayoshi T., “The asymptotic behaviour of the solutions of $(\Delta+\lambda)u=0$ in domains with the unbounded boundary”, Publ. Res. Inst. Math. Sci., 8:2 (1972), 375–391 | DOI | MR | Zbl

[5] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnaya teoriya. Samosopryazhennye operatory v gilbertovom prostranstve, T. 2, Mir, M., 1966

[6] Glazman I. M., “O kharaktere spektra mnogomernykh singulyarnykh kraevykh zadach”, Dokl. AN SSSR, 87:2 (1952), 171–174 | MR | Zbl