The quantum stochastic equation is unitarily equivalent to a~symmetric boundary value problem for the Schr\"odinger equation
Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 612-622.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the solution of the Hudson–Parthasarathy quantum stochastic differential equation in the Fock space coincides with the solution of a symmetric boundary value problem for the Schrödinger equation in the interaction representation generated by the energy operator of the environment. The boundary conditions describe the jumps in the phase and the amplitude of the Fourier transforms of the Fock vector components as any of its arguments changes the sign. The corresponding Markov evolution equation (the Lindblad equation or the “master equation”) is derived from the boundary value problem for the Schrödinger equation.
@article{MZM_1997_61_4_a11,
     author = {A. M. Chebotarev},
     title = {The quantum stochastic equation is unitarily equivalent to a~symmetric boundary value problem for the {Schr\"odinger} equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {612--622},
     publisher = {mathdoc},
     volume = {61},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a11/}
}
TY  - JOUR
AU  - A. M. Chebotarev
TI  - The quantum stochastic equation is unitarily equivalent to a~symmetric boundary value problem for the Schr\"odinger equation
JO  - Matematičeskie zametki
PY  - 1997
SP  - 612
EP  - 622
VL  - 61
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a11/
LA  - ru
ID  - MZM_1997_61_4_a11
ER  - 
%0 Journal Article
%A A. M. Chebotarev
%T The quantum stochastic equation is unitarily equivalent to a~symmetric boundary value problem for the Schr\"odinger equation
%J Matematičeskie zametki
%D 1997
%P 612-622
%V 61
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a11/
%G ru
%F MZM_1997_61_4_a11
A. M. Chebotarev. The quantum stochastic equation is unitarily equivalent to a~symmetric boundary value problem for the Schr\"odinger equation. Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 612-622. http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a11/

[1] Lindblad G., “On the generators of quantum dynamical semigroups”, Comm. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl

[2] Hudson R. L., Parthasarathy K. R., “Quantum Ito's formula and stochastic evolutions”, Comm. Math. Phys., 93:3 (1984), 301–323 | DOI | MR | Zbl

[3] Parthasarathy K. R., An introduction to quantum stochastic calculus, Birkhauser, Basel, 1992 | Zbl

[4] Meyer P. A., Quantum probability for probabilists, Lecture Notes in Math., 1338, Springer-Verlag, Berlin, 1993

[5] Davies E. B., Quantum theory of open systems, Acad. Press, London, 1976

[6] Gorini V., Kossakovsky A., Sudarshan E. C. G., “Completely positive dynamical semigroups of $n$-level systems”, J. Math. Phys., 17:3 (1976), 821–825 | DOI | MR

[7] Gardiner C. W., Collett M. J., “Input and output in damped quantum systems: quantum statistical differential equations and the master equation”, Phys. Rev. A, 31 (1985), 3761–3774 | DOI | MR

[8] A. N. Kolmogorov, S. P. Novikov (red.), Kvantovye sluchainye protsessy i otkrytye sistemy, Matematika. Novoe v zarubezhnoi nauke, 42, Mir, M., 1988

[9] Khasminskii R. Z., “Ergodicheskie svoistva vozvratnykh diffuzii i stabilizatsiya zadachi Koshi dlya parabolicheskogo uravneniya”, Teoriya veroyatn. i ee primeneniya, 5:1 (1960), 196–214 | MR

[10] Ichihara K., “Explosion problems for symmetric diffusion processes”, Lecture Notes in Math., 1203, 1986, 75–89 | MR | Zbl

[11] Chebotarev A. M., “Neobkhodimye i dostatochnye usloviya konservativnosti dinamicheskikh polugrupp”, Itogi nauki i tekhn. Sovrem. probl. matem. Noveishie dostizheniya, 36, VINITI, M., 1990, 149–184

[12] Chebotarev A. M., “O dostatochnykh usloviyakh konservativnosti minimalnoi dinamicheskoi polugruppy”, Matem. zametki, 52:4 (1992), 112–127 | MR | Zbl

[13] Chebotarev A. M., Fagnola F., Frigerio A., “Towards a stochasic Stone's theorem”, Stochastic patial differential equations and applications, Pitman Res. Notes Math. Ser., 268, Longman Sci. Tech., Harlow, 1992, 86–97 | MR | Zbl

[14] Chebotarev A. M., Fagnola F., “Sufficient conditions for conservativity of quantum dynamical semigroups”, J. Funct. Anal., 113:1 (1993), 131–153 | DOI | MR

[15] Holevo A. S., “On conservativity of covariant dynamical semigroups”, Rep. Math. Phys., 33 (1993), 95–100 | DOI | MR

[16] Bhat B. V. R., Parthasarathy K. R., “Markov dilations of non-conservative dynamical semigroups and a quantum boundary theory”, Ann. Inst. H. Poincaré. Probab. Statist., 31:4 (1995), 601–651 | MR | Zbl

[17] Holevo A. S., “On the structure of covariant dynamical semigroups”, J. Funct. Anal., 131 (1995), 255–278 | DOI | MR | Zbl

[18] Chebotarev A. M., Garsiya Kh. K., Gezada R. B., “Ob uravnenii Lindblada s neogranichennymi peremennymi koeffitsientami”, Matem. zametki, 61:1 (1997), 125–140 | MR | Zbl

[19] Chebotarev A. M., “Minimal solutions in classical and quantum probability”, Quantum Probability and Related Topics, VII, ed. L. Accardi, World Scientific, Singapore, 1992, 79–91 | MR | Zbl

[20] Fagnola F., Characterization of isometric and unitary weakly differentiable cocycles in Fock space, Quantum Probability and Related Topics VIII. Preprint No 358, UTM, Trento, 1993, p. 143–164 | MR

[21] Bhat B. V. R., Fagnola F., Sinha K. B., “On quantum extensions of semigroups of Brownian motions on a half-line”, Russian J. Math. Phys., 4:1 (1996), 13–28 | MR | Zbl

[22] Journé J. L., “Structure des cocycles markoviens sur l'espace de Fock”, Probab. Theory Related Fields, 75 (1987), 291–316 | DOI | MR | Zbl

[23] Chebotarev A. M., “Simmetrizovannaya forma stokhasticheskogo uravneniya Khadsona–Partasarati”, Matem. zametki, 60:5 (1996), 726–750 | MR | Zbl

[24] Koshmanenko V. D., “Vozmuscheniya samosopryazhennykh operatorov singulyarnymi bilineinymi formami”, Ukr. matem. zh., 41:1 (1989), 3–18 | MR

[25] Koshmanenko V. D., Singulyarnye bilineinye formy v teorii vozmuschenii samosopryazhennykh operatorov, Naukova dumka, Kiev, 1993

[26] Albeverio S., Karwowski W., Koshmanenko V., “Square powers of singularly perturbed operators”, Math. Nachr., 173 (1995), 5–24 | DOI | MR | Zbl

[27] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[28] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | Zbl