Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_61_4_a11, author = {A. M. Chebotarev}, title = {The quantum stochastic equation is unitarily equivalent to a~symmetric boundary value problem for the {Schr\"odinger} equation}, journal = {Matemati\v{c}eskie zametki}, pages = {612--622}, publisher = {mathdoc}, volume = {61}, number = {4}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a11/} }
TY - JOUR AU - A. M. Chebotarev TI - The quantum stochastic equation is unitarily equivalent to a~symmetric boundary value problem for the Schr\"odinger equation JO - Matematičeskie zametki PY - 1997 SP - 612 EP - 622 VL - 61 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a11/ LA - ru ID - MZM_1997_61_4_a11 ER -
%0 Journal Article %A A. M. Chebotarev %T The quantum stochastic equation is unitarily equivalent to a~symmetric boundary value problem for the Schr\"odinger equation %J Matematičeskie zametki %D 1997 %P 612-622 %V 61 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a11/ %G ru %F MZM_1997_61_4_a11
A. M. Chebotarev. The quantum stochastic equation is unitarily equivalent to a~symmetric boundary value problem for the Schr\"odinger equation. Matematičeskie zametki, Tome 61 (1997) no. 4, pp. 612-622. http://geodesic.mathdoc.fr/item/MZM_1997_61_4_a11/
[1] Lindblad G., “On the generators of quantum dynamical semigroups”, Comm. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl
[2] Hudson R. L., Parthasarathy K. R., “Quantum Ito's formula and stochastic evolutions”, Comm. Math. Phys., 93:3 (1984), 301–323 | DOI | MR | Zbl
[3] Parthasarathy K. R., An introduction to quantum stochastic calculus, Birkhauser, Basel, 1992 | Zbl
[4] Meyer P. A., Quantum probability for probabilists, Lecture Notes in Math., 1338, Springer-Verlag, Berlin, 1993
[5] Davies E. B., Quantum theory of open systems, Acad. Press, London, 1976
[6] Gorini V., Kossakovsky A., Sudarshan E. C. G., “Completely positive dynamical semigroups of $n$-level systems”, J. Math. Phys., 17:3 (1976), 821–825 | DOI | MR
[7] Gardiner C. W., Collett M. J., “Input and output in damped quantum systems: quantum statistical differential equations and the master equation”, Phys. Rev. A, 31 (1985), 3761–3774 | DOI | MR
[8] A. N. Kolmogorov, S. P. Novikov (red.), Kvantovye sluchainye protsessy i otkrytye sistemy, Matematika. Novoe v zarubezhnoi nauke, 42, Mir, M., 1988
[9] Khasminskii R. Z., “Ergodicheskie svoistva vozvratnykh diffuzii i stabilizatsiya zadachi Koshi dlya parabolicheskogo uravneniya”, Teoriya veroyatn. i ee primeneniya, 5:1 (1960), 196–214 | MR
[10] Ichihara K., “Explosion problems for symmetric diffusion processes”, Lecture Notes in Math., 1203, 1986, 75–89 | MR | Zbl
[11] Chebotarev A. M., “Neobkhodimye i dostatochnye usloviya konservativnosti dinamicheskikh polugrupp”, Itogi nauki i tekhn. Sovrem. probl. matem. Noveishie dostizheniya, 36, VINITI, M., 1990, 149–184
[12] Chebotarev A. M., “O dostatochnykh usloviyakh konservativnosti minimalnoi dinamicheskoi polugruppy”, Matem. zametki, 52:4 (1992), 112–127 | MR | Zbl
[13] Chebotarev A. M., Fagnola F., Frigerio A., “Towards a stochasic Stone's theorem”, Stochastic patial differential equations and applications, Pitman Res. Notes Math. Ser., 268, Longman Sci. Tech., Harlow, 1992, 86–97 | MR | Zbl
[14] Chebotarev A. M., Fagnola F., “Sufficient conditions for conservativity of quantum dynamical semigroups”, J. Funct. Anal., 113:1 (1993), 131–153 | DOI | MR
[15] Holevo A. S., “On conservativity of covariant dynamical semigroups”, Rep. Math. Phys., 33 (1993), 95–100 | DOI | MR
[16] Bhat B. V. R., Parthasarathy K. R., “Markov dilations of non-conservative dynamical semigroups and a quantum boundary theory”, Ann. Inst. H. Poincaré. Probab. Statist., 31:4 (1995), 601–651 | MR | Zbl
[17] Holevo A. S., “On the structure of covariant dynamical semigroups”, J. Funct. Anal., 131 (1995), 255–278 | DOI | MR | Zbl
[18] Chebotarev A. M., Garsiya Kh. K., Gezada R. B., “Ob uravnenii Lindblada s neogranichennymi peremennymi koeffitsientami”, Matem. zametki, 61:1 (1997), 125–140 | MR | Zbl
[19] Chebotarev A. M., “Minimal solutions in classical and quantum probability”, Quantum Probability and Related Topics, VII, ed. L. Accardi, World Scientific, Singapore, 1992, 79–91 | MR | Zbl
[20] Fagnola F., Characterization of isometric and unitary weakly differentiable cocycles in Fock space, Quantum Probability and Related Topics VIII. Preprint No 358, UTM, Trento, 1993, p. 143–164 | MR
[21] Bhat B. V. R., Fagnola F., Sinha K. B., “On quantum extensions of semigroups of Brownian motions on a half-line”, Russian J. Math. Phys., 4:1 (1996), 13–28 | MR | Zbl
[22] Journé J. L., “Structure des cocycles markoviens sur l'espace de Fock”, Probab. Theory Related Fields, 75 (1987), 291–316 | DOI | MR | Zbl
[23] Chebotarev A. M., “Simmetrizovannaya forma stokhasticheskogo uravneniya Khadsona–Partasarati”, Matem. zametki, 60:5 (1996), 726–750 | MR | Zbl
[24] Koshmanenko V. D., “Vozmuscheniya samosopryazhennykh operatorov singulyarnymi bilineinymi formami”, Ukr. matem. zh., 41:1 (1989), 3–18 | MR
[25] Koshmanenko V. D., Singulyarnye bilineinye formy v teorii vozmuschenii samosopryazhennykh operatorov, Naukova dumka, Kiev, 1993
[26] Albeverio S., Karwowski W., Koshmanenko V., “Square powers of singularly perturbed operators”, Math. Nachr., 173 (1995), 5–24 | DOI | MR | Zbl
[27] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[28] Berezin F. A., Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | Zbl