Comparison of various generalizations of continued fractions
Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 339-348.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the Euler, Jacobi, Poincaré, and Brun matrix algorithms as well as two new algorithms to evaluate the continued fraction expansions of two vectors $L$ related to two Davenport cubic forms $g_1$ and $g_2$. The Klein polyhedra of $g_1$ and $g_2$ were calculated in another paper. Here the integer convergents $P_k$ given by the cited algorithms are considered with respect to the Klein polyhedra. We also study the periods of these expansions. It turns out that only the Jacobi and Bryuno algorithms can be regarded as satisfactory.
@article{MZM_1997_61_3_a2,
     author = {A. D. Bruno and V. I. Parusnikov},
     title = {Comparison of various generalizations of continued fractions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {339--348},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a2/}
}
TY  - JOUR
AU  - A. D. Bruno
AU  - V. I. Parusnikov
TI  - Comparison of various generalizations of continued fractions
JO  - Matematičeskie zametki
PY  - 1997
SP  - 339
EP  - 348
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a2/
LA  - ru
ID  - MZM_1997_61_3_a2
ER  - 
%0 Journal Article
%A A. D. Bruno
%A V. I. Parusnikov
%T Comparison of various generalizations of continued fractions
%J Matematičeskie zametki
%D 1997
%P 339-348
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a2/
%G ru
%F MZM_1997_61_3_a2
A. D. Bruno; V. I. Parusnikov. Comparison of various generalizations of continued fractions. Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 339-348. http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a2/

[1] Bryuno A. D., Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979

[2] Khinchin A. Ya., Tsepnye drobi, 3-e izd., Fizmatgiz, M., 1961

[3] Euler L., “De relatione inter ternas pluresve quantitates instituenda”, Petersburger Akademie Notiz, Exhib. August 14, 1775; Commentationes arithmeticae collectae, V. II, St. Petersburg, 1849, 99–104

[4] Jacobi K. G. J., “Allgemeine Theorie der Kettenbruchänlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird”, J. Reine Angew. Math., 69 (1868), 29–64

[5] Poincare H., “Sur une generalization des fractionés continues”, C. R. Acad. Sci. Paris. Ser. 1, 99 (1884), 1014–1016

[6] Brun V., “En generalisation av Kjedebroken”, Skrifter utgit av Videnskapsselskapet i Kristiania. I. Matematisk-Naturvidenskabelig Klasse, 1919, no. 6; 1920, no. 6

[7] Klein F., “Über eine geometrische Auffassung der gewöhnlichen Kettenbruchentwicklung”, Nachr. Ges. Wiss. Göttingen Math.-Phys. Kl., 1895, no. 3, 357–359

[8] Bryuno A. D., Parusnikov V. I., “Mnogogranniki Kleina dlya dvukh kubicheskikh form Davenporta”, Matem. zametki, 56:4 (1994), 9–27 | MR | Zbl

[9] Davenport H., “On the product of three homogeneous linear forms, IV”, Proc. Cambrige Philos. Soc., 39 (1943), 1–21 | DOI | MR | Zbl

[10] Perron O., “Grundlagen für eine Theorie des Jacobischen Ketten-bruchalgorithmus”, Math. Ann., 64 (1907), 1–76 | DOI | MR

[11] Bryuno A. D., Parusnikov V. I., Sravnenie raznykh obobschenii tsepnykh drobei, Preprint No. 52, IPM, M., 1994

[12] Podsypanin E. V., “Ob odnom obobschenii algoritma tsepnykh drobei, svyazannom s algoritmom Viggo Bruna”, Zapiski nauch. sem. LOMI, 67, Nauka, L., 1977, 184–194 | MR | Zbl

[13] Brentjes A. J., Multi-dimensional continued fraction algorithms, Mathematisch Centrum, Amsterdam, 1981

[14] Buchmann J., “On the computation of units and class numbers by a generalization of Lagrange's algorithm”, J. Number Theory, 26 (1987), 8–30 | DOI | MR | Zbl

[15] Lachaud G., “Polyèdre d'Arnol'd et voile d'un cône simplicial: analogues du théorème de Lagrange”, C. R. Acad. Sci. Paris. Ser. 1, 317 (1993), 711–716 | MR | Zbl

[16] Lachaud G., Polyedre d'Arnold et voile d'un cône simplicial, analogues du théorème de Lagrange pour les irrationnels de degré quelconque, Prétirage No. 93–17, Laboratoire de Mathématiques Discrètes du C.N.R.S., Marseille, 1993