Compositions of linear-fractional transformations
Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 332-338.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behavior of the compositions $(\mathbf S_n\circ\dots\circ\mathbf S_1)(z)$ and $(\mathbf S_1\circ\dots\circ\mathbf S_n)(z)$ of linear-fractional transformations $\mathbf S_n(z)$ ($n=1,2,\dots$) whose fixed points have limits. In particular, if $\mathbf S_n(z)=\alpha_n(\beta_n+z)^{-1}$, then the sequence of compositions $(\mathbf S_1\circ\dots\circ\mathbf S_n)(z)$ at the point $z=0$ coincides with the sequence of convergents of the formal continued fraction $$ \frac{\alpha_1}{\beta_1+\dfrac{\alpha_2}{\beta_2+\dotsb}}. $$ The result obtained can be applied in the study of convergence of formal continued fractions.
@article{MZM_1997_61_3_a1,
     author = {V. I. Buslaev and S. F. Buslaeva},
     title = {Compositions of linear-fractional transformations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {332--338},
     publisher = {mathdoc},
     volume = {61},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a1/}
}
TY  - JOUR
AU  - V. I. Buslaev
AU  - S. F. Buslaeva
TI  - Compositions of linear-fractional transformations
JO  - Matematičeskie zametki
PY  - 1997
SP  - 332
EP  - 338
VL  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a1/
LA  - ru
ID  - MZM_1997_61_3_a1
ER  - 
%0 Journal Article
%A V. I. Buslaev
%A S. F. Buslaeva
%T Compositions of linear-fractional transformations
%J Matematičeskie zametki
%D 1997
%P 332-338
%V 61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a1/
%G ru
%F MZM_1997_61_3_a1
V. I. Buslaev; S. F. Buslaeva. Compositions of linear-fractional transformations. Matematičeskie zametki, Tome 61 (1997) no. 3, pp. 332-338. http://geodesic.mathdoc.fr/item/MZM_1997_61_3_a1/

[1] Van Vleck E. B., “On the convergence of algebraic continued fractions whose coefficients have limiting values”, Trans. Amer. Math. Soc., 5 (1904), 253–262 | DOI | MR

[2] Poincaré H., “Sur les équations linéaires aux différentielles et aux différences finies”, Amer. J. Math., 7 (1885), 203–258 | DOI | MR

[3] Perron O., “Ob odnoi teoreme A. Puankare”, J. Reine Angew. Math., 136 (1909), 17–37; “О линейном разностном уравнении А. Пуанкаре”, J. Reine Angew. Math., 137 (1910), 6–64

[4] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967

[5] Freiman G. A., “O teoremakh Puankare i Perrona”, UMN, 12:3 (1957), 241–246 | MR | Zbl

[6] Maté A., Nevai P., “A generalization of Poincaré's theorem for recurrence equations”, J. Approx. Theory, 63 (1990), 92–97 | DOI | MR | Zbl