Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_61_2_a9, author = {B. Yu. Sternin and V. E. Shatalov}, title = {Saddle-point method and resurgent analysis}, journal = {Matemati\v{c}eskie zametki}, pages = {278--296}, publisher = {mathdoc}, volume = {61}, number = {2}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a9/} }
B. Yu. Sternin; V. E. Shatalov. Saddle-point method and resurgent analysis. Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 278-296. http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a9/
[1] Écalle J., Les Fonctions Résurgentes, I, II, III, Publ. Mathématiques d'Orsay, Paris, 1981–1985
[2] Candelpergher B., Nosmas J. C., Pham F., Approche de la Résurgence, Hermann, Paris, 1993 | Zbl
[3] Sternin B., Shatalov V., “On a notion of resurgent function of several variables”, Math. Nachr., 171 (1995), 283–301 | DOI | MR | Zbl
[4] Sternin B., Shatalov V., Borel–Laplace Transform and Asymptotic Theory, CRC Press, Florida, 1995
[5] Berry M. V., Howls C. J., “Hyperasymptotics for integrals with saddles”, Proc. Roy. Soc. London. Ser. A, 443 (1991), 657–675 | MR
[6] Malgrange B., “Méthode de la phase stationnaire et sommation de Borel”, Complex Analysis. Microlocal Calculus and Relativistic Quantum Theory, Lecture Notes in Phys., 126, Springer-Verlag, Berlin–Heidelberg, 1980 | MR
[7] Pham F., “Vanishing homologies and the $n$ variable saddlepoint method”, Part 2, Proc. Sympos. Pure Math., 40, AMS, Providence, 1983, 319–333
[8] Sternin B., Shatalov V., Saddle Point Method and Resurgent Analysis, Preprint No. 95–69, Max-Planck-Institut für Mathematik, Bohn, 1995
[9] Sternin B., Shatalov V., Differential Equations on Complex Manifolds, Kluwer Acad. Publ., Dordrecht, 1994 | Zbl
[10] Fedoryuk M. V., Metod perevala, Nauka, M., 1977
[11] Tougeron J.-C., An introduction to the theory of Gevrey expansions and to Borel–Laplace transform with some applications, Preprint, Univ. of Toronto, Canada, 1990
[12] Lefschetz S., L'analysis Situs et la Géométrie Algébrique, Gauthier-Villars, Paris, 1924
[13] Delabaere E., “Introduction to the Écalle theory”, Computer Algebra and Differential Equations, London Math. Soc. Lecture Note Ser., 193, ed. E. Tournier, Univ. Press, Cambridge, 1994, 59–102 | MR