Efficiency of numerical integration algorithms related to divisor theory in cyclotomic fields
Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 297-301
Voir la notice de l'article provenant de la source Math-Net.Ru
For function classes with dominant mixed derivative and bounded mixed difference in the metric of $L^q$ ($1$), quadrature formulas are constructed so that the following properties are achieved simultaneously: the grid is simple, the algorithm is efficient and close to the optimal algorithm for constructing the grid, and the order of the error on the power scale cannot be further improved. The case $q=2$ was studied earlier.
@article{MZM_1997_61_2_a10,
author = {N. Temirgaliev},
title = {Efficiency of numerical integration algorithms related to divisor theory in cyclotomic fields},
journal = {Matemati\v{c}eskie zametki},
pages = {297--301},
publisher = {mathdoc},
volume = {61},
number = {2},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a10/}
}
TY - JOUR AU - N. Temirgaliev TI - Efficiency of numerical integration algorithms related to divisor theory in cyclotomic fields JO - Matematičeskie zametki PY - 1997 SP - 297 EP - 301 VL - 61 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a10/ LA - ru ID - MZM_1997_61_2_a10 ER -
N. Temirgaliev. Efficiency of numerical integration algorithms related to divisor theory in cyclotomic fields. Matematičeskie zametki, Tome 61 (1997) no. 2, pp. 297-301. http://geodesic.mathdoc.fr/item/MZM_1997_61_2_a10/