Measure-valued almost periodic functions
Matematičeskie zametki, Tome 61 (1997) no. 1, pp. 57-68
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider Stepanov almost periodic functions $\mu\in S(\mathbb R,\mathscr M)$ ranging in the metric space $\mathscr M$ of Borel probability measures on a complete separable metric space $\mathscr U$ is equipped with the Prokhorov metric). The main result is as follows: a function $t\to\mu[\cdot;t]\in\mathscr M$, $t\in\mathbb R$, belongs to $S(\mathbb R,\mathscr M)$ if and only if for each bounded continuous function $\mathscr F\in C_b(\mathscr U,\mathbb R)$, the function $\int_{\mathscr U}\mathscr F(x)\mu[dx;\cdot]$ is Stepanov almost periodic (of order 1) and
$$
\operatorname{Mod}\mu=\sum_{\mathscr F\in C_b(\mathscr U,\mathbb R)}\operatorname{Mod}\int_{\mathscr U}\mathscr F(x)\mu[dx;\cdot].
$$
@article{MZM_1997_61_1_a6,
author = {L. I. Danilov},
title = {Measure-valued almost periodic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {57--68},
publisher = {mathdoc},
volume = {61},
number = {1},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a6/}
}
L. I. Danilov. Measure-valued almost periodic functions. Matematičeskie zametki, Tome 61 (1997) no. 1, pp. 57-68. http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a6/