Conservation and bifurcation of an invariant torus of a~vector field
Matematičeskie zametki, Tome 61 (1997) no. 1, pp. 34-44
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider small perturbations with respect to a small parameter $\varepsilon\ge0$ of a smooth vector field in $\mathbb R^{n+m}$ possessing an invariant torus $T_m$. The flow on the torus $T_m$ is assumed to be quasiperiodic with $m$ basic frequencies satisfying certain conditions of Diophantine type; the matrix $\Omega$ of the variational equation with respect to the invariant torus is assumed to be constant. We investigate the existence problem for invariant tori of different dimensions for the case in which $\Omega$ is a nonsingular matrix that can have purely imaginary eigenvalues.
@article{MZM_1997_61_1_a4,
author = {Yu. N. Bibikov},
title = {Conservation and bifurcation of an invariant torus of a~vector field},
journal = {Matemati\v{c}eskie zametki},
pages = {34--44},
publisher = {mathdoc},
volume = {61},
number = {1},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a4/}
}
Yu. N. Bibikov. Conservation and bifurcation of an invariant torus of a~vector field. Matematičeskie zametki, Tome 61 (1997) no. 1, pp. 34-44. http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a4/