On the word problem and the conjugacy problem for groups of the form $F/V(R)$
Matematičeskie zametki, Tome 61 (1997) no. 1, pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F$ be a free group with at most countable system $\mathfrak x$ of free generators, let $R$ be its normal subgroup recursively enumerable with respect to $\mathfrak x$, and let $\mathfrak V$ be a variety of groups that differs from $\mathfrak O$ and for which the corresponding verbal subgroup $V$ of the free group of countable rank is recursive. It is proved that the word problem in $F/V(R)$ is solvable if and only if this problem is solvable in $F/R$, and if $|\mathfrak x|\ge3$, then there exists an $R$ such, that the conjugacy problem in $F/R$ is solvable, but this problem is unsolvable in $F/V(R)$ for any Abelian variety $\mathfrak V\ne\mathfrak E$ (all algorithmic problems are regarded with respect to the images of $\mathfrak x$ under the corresponding natural epimorphisms).
@article{MZM_1997_61_1_a0,
     author = {M. I. Anokhin},
     title = {On the word problem and the conjugacy problem for groups of the form $F/V(R)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a0/}
}
TY  - JOUR
AU  - M. I. Anokhin
TI  - On the word problem and the conjugacy problem for groups of the form $F/V(R)$
JO  - Matematičeskie zametki
PY  - 1997
SP  - 3
EP  - 9
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a0/
LA  - ru
ID  - MZM_1997_61_1_a0
ER  - 
%0 Journal Article
%A M. I. Anokhin
%T On the word problem and the conjugacy problem for groups of the form $F/V(R)$
%J Matematičeskie zametki
%D 1997
%P 3-9
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a0/
%G ru
%F MZM_1997_61_1_a0
M. I. Anokhin. On the word problem and the conjugacy problem for groups of the form $F/V(R)$. Matematičeskie zametki, Tome 61 (1997) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/MZM_1997_61_1_a0/

[1] Mazurov V. D., Khukhro E. I. (sost.), Nereshennye voprosy teorii grupp. Kourovskaya tetrad, 12 izd., Novosibirsk, 1992

[2] Shmelkin A. L., “Spleteniya i mnogoobraziya grupp”, Izv. AN SSSR. Ser. matem., 29:1 (1965), 149–170 | MR | Zbl

[3] Neiman Kh., Mnogoobraziya grupp, Mir, M., 1969

[4] Bronshtein M. A., “O verbalnykh podgruppakh svobodnykh grupp”, Dokl. AN SSSR, 177:2 (1967), 255–257 | MR

[5] Matthews J., “The conjugacy problem in wreath products and free metabelian groups”, Trans. Amer. Math. Soc., 121:2 (1966), 329–339 | DOI | MR | Zbl

[6] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989

[7] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | Zbl

[8] McCool J., “The order problem and the power problem for free products sixth-groups”, Glasgow Math. J., 10:1 (1969), 1–9 | DOI | MR | Zbl

[9] McCool J., “Unsolvable problems in groups with solvable word problem”, Canad. J. Math., 22:4 (1970), 836–838 | MR | Zbl