Normal dilatation of triangular matrices
Matematičeskie zametki, Tome 60 (1996) no. 6, pp. 861-872.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a (real or complex) triangular matrix of order $n$, say, an upper triangular matrix. Is it true that there exists a normal $n\times n$ matrix $A$ whose upper triangle coincides with the upper triangle of $R$? The answer to this question is “yes” and is obvious in the following cases: (1) $R$ is real; (2) $R$ is a complex matrix with a real or a pure imaginary main diagonal, and moreover, all the diagonal entries of $R$ belong to a straight line. The answer is also in the affirmative (although it is not so obvious) for any matrix $R$ of order 2. However, even for $n=3$ this problem remains unsolved. In this paper it is shown that the answer is in the affirmative also for $3\times3$ matrices.
@article{MZM_1996_60_6_a7,
     author = {Kh. D. Ikramov},
     title = {Normal dilatation of triangular matrices},
     journal = {Matemati\v{c}eskie zametki},
     pages = {861--872},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a7/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Normal dilatation of triangular matrices
JO  - Matematičeskie zametki
PY  - 1996
SP  - 861
EP  - 872
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a7/
LA  - ru
ID  - MZM_1996_60_6_a7
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Normal dilatation of triangular matrices
%J Matematičeskie zametki
%D 1996
%P 861-872
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a7/
%G ru
%F MZM_1996_60_6_a7
Kh. D. Ikramov. Normal dilatation of triangular matrices. Matematičeskie zametki, Tome 60 (1996) no. 6, pp. 861-872. http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a7/