, with the elliptic operator $L$ in divergent or nondivergent form. We establish a dependence of the maximum modulus of the solution on the domain and on the equation (inequality) such that this dependence guarantees the existence of a “dead zone” of the solution. In this case, the character of degeneracy is unessential.
@article{MZM_1996_60_6_a3,
author = {R. Ya. Glagoleva},
title = {A~sufficient condition for the existence of a~{\textquotedblleft}dead zone{\textquotedblright} for solutions of degenerate semilinear parabolic equations and inequalities},
journal = {Matemati\v{c}eskie zametki},
pages = {824--831},
year = {1996},
volume = {60},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a3/}
}
TY - JOUR AU - R. Ya. Glagoleva TI - A sufficient condition for the existence of a “dead zone” for solutions of degenerate semilinear parabolic equations and inequalities JO - Matematičeskie zametki PY - 1996 SP - 824 EP - 831 VL - 60 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a3/ LA - ru ID - MZM_1996_60_6_a3 ER -
%0 Journal Article %A R. Ya. Glagoleva %T A sufficient condition for the existence of a “dead zone” for solutions of degenerate semilinear parabolic equations and inequalities %J Matematičeskie zametki %D 1996 %P 824-831 %V 60 %N 6 %U http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a3/ %G ru %F MZM_1996_60_6_a3
R. Ya. Glagoleva. A sufficient condition for the existence of a “dead zone” for solutions of degenerate semilinear parabolic equations and inequalities. Matematičeskie zametki, Tome 60 (1996) no. 6, pp. 824-831. http://geodesic.mathdoc.fr/item/MZM_1996_60_6_a3/
[1] Diaz J. I., Nonlinear Partial Equations and Free Boundaries. V. 1. Elliptic Equations, Research Notes in Math., 106, Pitman, London, 1988
[2] Chipot M., Variational Inequalities and Flow in Pourpes Media, Appl. Math. Sci., 52, Springer-Verlag, Berlin, 1984 | MR | Zbl
[3] Chistyakov V. V., “O nekotorykh kachestvennykh svoistvakh reshenii nedivergentnogo polulineinogo parabolicheskogo uravneniya vtorogo poryadka”, UMN, 41:5 (1986), 199–210 | MR
[4] Chistyakov V. V., O svoistvakh polulineinykh parabolicheskikh uravnenii vtorogo poryadka, Tr. sem. im. I. G. Petrovskogo, 15, Izd-vo Mosk. un-ta, M., 1990
[5] Kondratev V. A., Landis E. M., “Polulineinye uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi”, Matem. zametki, 44:4 (1988), 457–468 | MR | Zbl
[6] Landis E. M., “Some properties of the solution of degenerating semilinear elliptic inequalities”, Russian J. Math. Phys., 1:4 (1993), 483–494 | MR | Zbl
[7] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971