A three-time-level explicit difference scheme of the second order of accuracy for parabolic equations
Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 751-759.

Voir la notice de l'article provenant de la source Math-Net.Ru

The difference schemes of Richardson [1] and of Crank–Nicolson [2] are schemes providing second-order approximation. Richardson's three-time-level difference scheme is explicit but unstable and the Crank–Nicolson two-time-level difference scheme is stable but implicit. Explicit numerical methods are preferable for parallel computations. In this paper, an explicit three-time-level difference scheme of the second order of accuracy is constructed for parabolic equations by combining Richardson's scheme with that of Crank–Nicolson. Restrictions on the time step required for the stability of the proposed difference scheme are similar to those that are necessary for the stability of the two-time-level explicit difference scheme, but the former are slightly less onerous.
@article{MZM_1996_60_5_a8,
     author = {A. S. Shvedov},
     title = {A three-time-level explicit difference scheme of the second order of accuracy for parabolic equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {751--759},
     publisher = {mathdoc},
     volume = {60},
     number = {5},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a8/}
}
TY  - JOUR
AU  - A. S. Shvedov
TI  - A three-time-level explicit difference scheme of the second order of accuracy for parabolic equations
JO  - Matematičeskie zametki
PY  - 1996
SP  - 751
EP  - 759
VL  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a8/
LA  - ru
ID  - MZM_1996_60_5_a8
ER  - 
%0 Journal Article
%A A. S. Shvedov
%T A three-time-level explicit difference scheme of the second order of accuracy for parabolic equations
%J Matematičeskie zametki
%D 1996
%P 751-759
%V 60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a8/
%G ru
%F MZM_1996_60_5_a8
A. S. Shvedov. A three-time-level explicit difference scheme of the second order of accuracy for parabolic equations. Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 751-759. http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a8/

[1] Richardson L. F., “The approximate solution by finite differences of physical problems involving differential equations with an application to the stresses in a masonry dam”, Roy. Soc. Philos. Trans., 210A (1910), 307–357

[2] Crank J., Nicolson P., “A practical method for numerical integration of solutions of partial differential equations of heat conduction type, I”, Proc. Cambridge Philos. Soc., 43 (1947), 50–67 | DOI | MR

[3] Yuan Chzhao-din, Nekotorye raznostnye skhemy resheniya pervoi kraevoi zadachi dlya lineinykh differentsialnykh uravnenii s chastnymi proizvodnymi, Diss. ... k. f.-m. n., MGU, M., 1958

[4] Shvedov A. S., Postroenie trekhsloinoi yavnoi raznostnoi skhemy vtorogo poryadka tochnosti dlya parabolicheskikh uravnenii na osnove raznostnykh skhem Richardsona i Krenka–Nikolson, Preprint IPM im. M. V. Keldysha RAN No 104, M., 1995