Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1996_60_5_a8, author = {A. S. Shvedov}, title = {A three-time-level explicit difference scheme of the second order of accuracy for parabolic equations}, journal = {Matemati\v{c}eskie zametki}, pages = {751--759}, publisher = {mathdoc}, volume = {60}, number = {5}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a8/} }
TY - JOUR AU - A. S. Shvedov TI - A three-time-level explicit difference scheme of the second order of accuracy for parabolic equations JO - Matematičeskie zametki PY - 1996 SP - 751 EP - 759 VL - 60 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a8/ LA - ru ID - MZM_1996_60_5_a8 ER -
A. S. Shvedov. A three-time-level explicit difference scheme of the second order of accuracy for parabolic equations. Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 751-759. http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a8/
[1] Richardson L. F., “The approximate solution by finite differences of physical problems involving differential equations with an application to the stresses in a masonry dam”, Roy. Soc. Philos. Trans., 210A (1910), 307–357
[2] Crank J., Nicolson P., “A practical method for numerical integration of solutions of partial differential equations of heat conduction type, I”, Proc. Cambridge Philos. Soc., 43 (1947), 50–67 | DOI | MR
[3] Yuan Chzhao-din, Nekotorye raznostnye skhemy resheniya pervoi kraevoi zadachi dlya lineinykh differentsialnykh uravnenii s chastnymi proizvodnymi, Diss. ... k. f.-m. n., MGU, M., 1958
[4] Shvedov A. S., Postroenie trekhsloinoi yavnoi raznostnoi skhemy vtorogo poryadka tochnosti dlya parabolicheskikh uravnenii na osnove raznostnykh skhem Richardsona i Krenka–Nikolson, Preprint IPM im. M. V. Keldysha RAN No 104, M., 1995