Symmetric form of the Hudson-Parthasarathy stochastic equation
Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 726-750.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the Hudson–Parthasarathy equation corresponds, up to unitary equivalence, to the strong resolvent limit of Schrödinger Hamiltonians in Fock space and that the symmetric form of this equation corresponds to the weak limit of the Schrödinger Hamiltonians.
@article{MZM_1996_60_5_a7,
     author = {A. M. Chebotarev},
     title = {Symmetric form of the {Hudson-Parthasarathy} stochastic equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {726--750},
     publisher = {mathdoc},
     volume = {60},
     number = {5},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a7/}
}
TY  - JOUR
AU  - A. M. Chebotarev
TI  - Symmetric form of the Hudson-Parthasarathy stochastic equation
JO  - Matematičeskie zametki
PY  - 1996
SP  - 726
EP  - 750
VL  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a7/
LA  - ru
ID  - MZM_1996_60_5_a7
ER  - 
%0 Journal Article
%A A. M. Chebotarev
%T Symmetric form of the Hudson-Parthasarathy stochastic equation
%J Matematičeskie zametki
%D 1996
%P 726-750
%V 60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a7/
%G ru
%F MZM_1996_60_5_a7
A. M. Chebotarev. Symmetric form of the Hudson-Parthasarathy stochastic equation. Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 726-750. http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a7/

[1] Klauder Dzh., Sudarshan E., Osnovy kvantovoi optiki, Mir, M., 1970

[2] Haake F., Stochastic treatement of open systems by general master equations, Springer-Verlag, N. Y.–London–Berlin–Tokyo, 1973

[3] Davies E. B., Quantum theory of open systems, Acad. Press, London, 1976

[4] Helström C. W., Quantum detection and estimation theory, London Acad. Press, London, 1976

[5] Gardiner C. W., Collett M. J., “Input and output in damped quantum systems: quantum statistical differential equations and the master equation”, Phys. Rev. A, 31 (1985), 3761–3774 | DOI | MR

[6] Chebotarev A. M., Fagnola F., Frigerio A., “Towards a stochasic Stone's theorem”, Stochastic patial differential equations and applications, Pitman Research Notes in Math., 1992, 86–97 | MR | Zbl

[7] Accardi L., Frigerio A., Lewis J. T., “Quantum stochastic processes”, Publ. Rims. Kyoto Univ., 18 (1982), 97–133 | DOI | MR | Zbl

[8] Gorini V., Kossakovsky A., Sudarshan E. C. G., “Completely positive dynamical semigroups of $n$-level systems”, J. Math. Phys., 17:3 (1976), 821–825 | DOI | MR

[9] Lindblad G., “On the generators of quantum dynamical semigroups”, Comm. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl

[10] Hudson R. L., Parthasarathy K. R., “Quantum Ito's formula and stochastic evolutions”, Comm. Math. Phys., 93:3 (1984), 301–323 | DOI | MR | Zbl

[11] Meyer P. A., Quantum probability for probabilists, Lecture Notes in Math., 1338, 1993

[12] Parthasarathy K. R., An introduction to quantum stochastic calculus, Birkhauser, Basel, 1992 | Zbl

[13] Belavkin V. P., “A quantum nonadapted Ito formula and stochastic analisis in Fock space”, J. Funct. Anal., 102:2 (1991), 414–447 | DOI | MR

[14] Journee J.-L., “Structure des cocycles markovins sur l'espace de Fock”, Probab. Theory Related Fields, 75 (1987), 291–316 | DOI | MR

[15] Kholevo A. S., “Stokhasticheskie predstavleniya kvantovykh dinamicheskikh polugrupp”, Tr. MIAN, 191, Nauka, M., 1989, 130–139 | MR | Zbl

[16] Holevo A. S., “Exponential formulae in quantum stochastic calculus”, Proc. Roy. Soc. Edinburg. Sect. A, 126 (1996), 375–389 | MR | Zbl

[17] Koshmanenko V. D., “Vozmuscheniya samosopryazhennykh operatorov singulyarnymi bilineinymi formami”, Ukr. matem. zh., 41:1 (1989), 3–18 | MR

[18] Koshmanenko V. D., Singulyarnye bilineinye formy v teorii vozmuschenii samosopryazhennykh operatorov, Naukova dumka, Kiev, 1993

[19] Aberg C., Lubenets E. R., Quantum stochastic calculus and nondemolition measurements, Notes on a Recent Approach to Quantum Measurement. Report No 94–28, Institute of Theoretical Physics, Goteborg, 1994

[20] Lubenets E. R., “Quantum stochastic equation as a limit of the Schrödinger evolution” (to appear)

[21] Chebotarev A. M., “Minimal solutions in classical and quantum probability”, Quantum probability and related topics, ed. L. Accardi, World Scientific, Singapore, 1992 | Zbl

[22] Chebotarev A. M., “Sufficient conditions for conservativity of a minimal dynamical semigroup”, Math. Notes, 52:3–4 (1992), 1077–1077 | MR | Zbl

[23] Chebotarev A. M., Fagnola F., “Sufficient conditions for conservativity of quantum dynamical semigroups”, J. Funct. Anal., 118 (1993), 131–153 | DOI | MR | Zbl

[24] Nelson E., “Analitic vectors”, Ann. Math., 70 (1970), 572–614 | DOI

[25] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1967