Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1996_60_5_a7, author = {A. M. Chebotarev}, title = {Symmetric form of the {Hudson-Parthasarathy} stochastic equation}, journal = {Matemati\v{c}eskie zametki}, pages = {726--750}, publisher = {mathdoc}, volume = {60}, number = {5}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a7/} }
A. M. Chebotarev. Symmetric form of the Hudson-Parthasarathy stochastic equation. Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 726-750. http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a7/
[1] Klauder Dzh., Sudarshan E., Osnovy kvantovoi optiki, Mir, M., 1970
[2] Haake F., Stochastic treatement of open systems by general master equations, Springer-Verlag, N. Y.–London–Berlin–Tokyo, 1973
[3] Davies E. B., Quantum theory of open systems, Acad. Press, London, 1976
[4] Helström C. W., Quantum detection and estimation theory, London Acad. Press, London, 1976
[5] Gardiner C. W., Collett M. J., “Input and output in damped quantum systems: quantum statistical differential equations and the master equation”, Phys. Rev. A, 31 (1985), 3761–3774 | DOI | MR
[6] Chebotarev A. M., Fagnola F., Frigerio A., “Towards a stochasic Stone's theorem”, Stochastic patial differential equations and applications, Pitman Research Notes in Math., 1992, 86–97 | MR | Zbl
[7] Accardi L., Frigerio A., Lewis J. T., “Quantum stochastic processes”, Publ. Rims. Kyoto Univ., 18 (1982), 97–133 | DOI | MR | Zbl
[8] Gorini V., Kossakovsky A., Sudarshan E. C. G., “Completely positive dynamical semigroups of $n$-level systems”, J. Math. Phys., 17:3 (1976), 821–825 | DOI | MR
[9] Lindblad G., “On the generators of quantum dynamical semigroups”, Comm. Math. Phys., 48:2 (1976), 119–130 | DOI | MR | Zbl
[10] Hudson R. L., Parthasarathy K. R., “Quantum Ito's formula and stochastic evolutions”, Comm. Math. Phys., 93:3 (1984), 301–323 | DOI | MR | Zbl
[11] Meyer P. A., Quantum probability for probabilists, Lecture Notes in Math., 1338, 1993
[12] Parthasarathy K. R., An introduction to quantum stochastic calculus, Birkhauser, Basel, 1992 | Zbl
[13] Belavkin V. P., “A quantum nonadapted Ito formula and stochastic analisis in Fock space”, J. Funct. Anal., 102:2 (1991), 414–447 | DOI | MR
[14] Journee J.-L., “Structure des cocycles markovins sur l'espace de Fock”, Probab. Theory Related Fields, 75 (1987), 291–316 | DOI | MR
[15] Kholevo A. S., “Stokhasticheskie predstavleniya kvantovykh dinamicheskikh polugrupp”, Tr. MIAN, 191, Nauka, M., 1989, 130–139 | MR | Zbl
[16] Holevo A. S., “Exponential formulae in quantum stochastic calculus”, Proc. Roy. Soc. Edinburg. Sect. A, 126 (1996), 375–389 | MR | Zbl
[17] Koshmanenko V. D., “Vozmuscheniya samosopryazhennykh operatorov singulyarnymi bilineinymi formami”, Ukr. matem. zh., 41:1 (1989), 3–18 | MR
[18] Koshmanenko V. D., Singulyarnye bilineinye formy v teorii vozmuschenii samosopryazhennykh operatorov, Naukova dumka, Kiev, 1993
[19] Aberg C., Lubenets E. R., Quantum stochastic calculus and nondemolition measurements, Notes on a Recent Approach to Quantum Measurement. Report No 94–28, Institute of Theoretical Physics, Goteborg, 1994
[20] Lubenets E. R., “Quantum stochastic equation as a limit of the Schrödinger evolution” (to appear)
[21] Chebotarev A. M., “Minimal solutions in classical and quantum probability”, Quantum probability and related topics, ed. L. Accardi, World Scientific, Singapore, 1992 | Zbl
[22] Chebotarev A. M., “Sufficient conditions for conservativity of a minimal dynamical semigroup”, Math. Notes, 52:3–4 (1992), 1077–1077 | MR | Zbl
[23] Chebotarev A. M., Fagnola F., “Sufficient conditions for conservativity of quantum dynamical semigroups”, J. Funct. Anal., 118 (1993), 131–153 | DOI | MR | Zbl
[24] Nelson E., “Analitic vectors”, Ann. Math., 70 (1970), 572–614 | DOI
[25] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1967