Analytic continuation and superconvergence of series of homogeneous polynomials
Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 708-714
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $D$ be a domain in $\mathbb R^n$ ($n\ge1$) and $x^0\in D$. We prove that a necessary and sufficient condition for the existence of a semicontinuous regular method ${\operatorname{A}}$ such that the series expansion of any real-analytic function $f$ in $D$ in homogeneous polynomials around $x^0$ is uniformly summed by this method to $f(x)$ on compact subsets of $D$ is that $D$ be rectilinearly star-shaped with respect to $x^0$.
@article{MZM_1996_60_5_a5,
author = {A. V. Pokrovskii},
title = {Analytic continuation and superconvergence of series of homogeneous polynomials},
journal = {Matemati\v{c}eskie zametki},
pages = {708--714},
year = {1996},
volume = {60},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a5/}
}
A. V. Pokrovskii. Analytic continuation and superconvergence of series of homogeneous polynomials. Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 708-714. http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a5/
[1] Kuk R., Beskonechnye matritsy i prostranstva posledovatelnostei, Fizmatgiz, M., 1960
[2] Shabat B. V., Vvedenie v kompleksnyi analiz, T. 2, Nauka, M., 1985
[3] Markushevich A. I., “Analiticheskoe prodolzhenie i sverkhskhodimost”, Dokl. AN SSSR, 45:6 (1944), 239–241
[4] Markushevich A. I., Teoriya analiticheskikh funktsii, T. 2, Nauka, M., 1968