Analytic continuation and superconvergence of series of homogeneous polynomials
Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 708-714
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $D$ be a domain in $\mathbb R^n$ ($n\ge1$) and $x^0\in D$. We prove that a necessary and sufficient condition for the existence of a semicontinuous regular method ${\operatorname{A}}$ such that the series expansion of any real-analytic function $f$ in $D$ in homogeneous polynomials around $x^0$ is uniformly summed by this method to $f(x)$ on compact subsets of $D$ is that $D$ be rectilinearly star-shaped with respect to $x^0$.
@article{MZM_1996_60_5_a5,
author = {A. V. Pokrovskii},
title = {Analytic continuation and superconvergence of series of homogeneous polynomials},
journal = {Matemati\v{c}eskie zametki},
pages = {708--714},
publisher = {mathdoc},
volume = {60},
number = {5},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a5/}
}
A. V. Pokrovskii. Analytic continuation and superconvergence of series of homogeneous polynomials. Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 708-714. http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a5/