Algebraic independence of the periods of abelian integrals
Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 681-691

Voir la notice de l'article provenant de la source Math-Net.Ru

Abelian integrals of the first and the second kind are proved to have two algebraically independent periods. Some corollaries concerning the algebraic independence of the values of Euler's beta and gamma functions at rational points are derived.
@article{MZM_1996_60_5_a3,
     author = {K. G. Vasil'ev},
     title = {Algebraic independence of the periods of abelian integrals},
     journal = {Matemati\v{c}eskie zametki},
     pages = {681--691},
     publisher = {mathdoc},
     volume = {60},
     number = {5},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a3/}
}
TY  - JOUR
AU  - K. G. Vasil'ev
TI  - Algebraic independence of the periods of abelian integrals
JO  - Matematičeskie zametki
PY  - 1996
SP  - 681
EP  - 691
VL  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a3/
LA  - ru
ID  - MZM_1996_60_5_a3
ER  - 
%0 Journal Article
%A K. G. Vasil'ev
%T Algebraic independence of the periods of abelian integrals
%J Matematičeskie zametki
%D 1996
%P 681-691
%V 60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a3/
%G ru
%F MZM_1996_60_5_a3
K. G. Vasil'ev. Algebraic independence of the periods of abelian integrals. Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 681-691. http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a3/