Topological complexity and real roots of polynomials
Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 670-680
Cet article a éte moissonné depuis la source Math-Net.Ru
The topological complexity of an algorithm is the number of its branchings. In the paper we prove that the minimal topological complexity of an algorithm that approximately computes a root of a real polynomial of degree $d$ equals $d/2$ for even $d$, is greater than or equal to 1 for odd $d>-3$, and equals 1 for $d=3$ or 5.
@article{MZM_1996_60_5_a2,
author = {V. A. Vassiliev},
title = {Topological complexity and real roots of polynomials},
journal = {Matemati\v{c}eskie zametki},
pages = {670--680},
year = {1996},
volume = {60},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a2/}
}
V. A. Vassiliev. Topological complexity and real roots of polynomials. Matematičeskie zametki, Tome 60 (1996) no. 5, pp. 670-680. http://geodesic.mathdoc.fr/item/MZM_1996_60_5_a2/
[1] Smale S., “On the topology of algorithms, I”, J. Complex, 3 (1987), 81–89 | DOI | MR | Zbl
[2] Vasilev V. A., “Kogomologii grupp kos i slozhnost algoritmov”, Funktsion. analiz i ego prilozh., 22:3 (1988), 15–24 | MR | Zbl
[3] Vasilev V. A., “Topologicheskaya slozhnost algoritmov priblizhennogo resheniya sistem polinomialnykh uravnenii”, Algebra i analiz, 1:6 (1989), 98–113 | MR | Zbl
[4] Vassiliev V. A., Complements of Discriminants of Smooth Maps: Topology and Applications, Revised edition, Translations of Math. Monographs, 98, AMS, Providence, 1994