Convergence of the Vall\'ee--Poussin means for Fourier--Jacobi sums
Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 569-586.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f\in C[-1,1]$, $-1\alpha$, $\beta\le0$, $S_n^{\alpha,\beta}(f,x)$ be a partial Fourier–Jacobi sum of order $n$, and let $$ \begin{aligned} {\mathscr V}_{m,n}^{\alpha,\beta} ={\mathscr V}_{m,n}^{\alpha,\beta}(f) ={\mathscr V}_{m,n}^{\alpha,\beta}(f,x) \ =\frac 1{n+1}\bigl[S_m^{\alpha,\beta}(f,x)+\dots+S_{m+n}^{\alpha,\beta}(f,x)\bigr] \end{aligned} $$ be the Vallée Poussin means for Fourier–Jacobi sums. It was proved that if $0$, then there exists a constant $c=c(\alpha,\beta,a,b)$ such that $\|{\mathscr V}_{m,n}^{\alpha,\beta}\|\le c$, where $\|{V}_{m,n}^{\alpha,\beta}\|$ is the norm of the operator ${\mathscr V}_{m,n}^{\alpha,\beta}$ in $C[-1,1]$.
@article{MZM_1996_60_4_a7,
     author = {I. I. Sharapudinov and I. A. Vagabov},
     title = {Convergence of the {Vall\'ee--Poussin} means for {Fourier--Jacobi} sums},
     journal = {Matemati\v{c}eskie zametki},
     pages = {569--586},
     publisher = {mathdoc},
     volume = {60},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a7/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
AU  - I. A. Vagabov
TI  - Convergence of the Vall\'ee--Poussin means for Fourier--Jacobi sums
JO  - Matematičeskie zametki
PY  - 1996
SP  - 569
EP  - 586
VL  - 60
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a7/
LA  - ru
ID  - MZM_1996_60_4_a7
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%A I. A. Vagabov
%T Convergence of the Vall\'ee--Poussin means for Fourier--Jacobi sums
%J Matematičeskie zametki
%D 1996
%P 569-586
%V 60
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a7/
%G ru
%F MZM_1996_60_4_a7
I. I. Sharapudinov; I. A. Vagabov. Convergence of the Vall\'ee--Poussin means for Fourier--Jacobi sums. Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 569-586. http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a7/

[1] Agakhanov S. A., Natanson G. I., “Funktsiya Lebega summ Fure–Yakobi”, Vestn. LGU. Matem., mekh., astron., 1968, no. 1, 11–23 | MR | Zbl

[2] Badkov V. M., “Otsenka funktsii Lebega i ostatka ryada Fure–Yakobi”, Sib. matem. zh., 7:6, 1263–1283

[3] Sharapudinov I. I., “O nailuchshem priblizhenii i summakh Fure–Yakobi”, Matem. zametki, 34:5 (1983), 651–661 | MR | Zbl

[4] Segë G., Ortogonalnye mnogochleny, M., 1962

[5] Askey R., Wainger S., “A convolution structure for Jacobi series”, Amer. J. Math., 1969, no. 2, 463–483 | DOI | MR

[6] Gasper G., “Banach algebras for Jacobi series and positivity of a kernel”, Ann. Math., 95:2 (1972), 261–280 | DOI | MR | Zbl

[7] Kalnei S. G., “Ob analoge teoremy S. M. Nikolskogo dlya ryadov Yakobi”, Ukr. matem. zh., 41:4 (1991), 503–513 | MR