Convergence of the Vall\'ee--Poussin means for Fourier--Jacobi sums
Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 569-586
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f\in C[-1,1]$, $-1\alpha$, $\beta\le0$, $S_n^{\alpha,\beta}(f,x)$ be a partial Fourier–Jacobi sum of order $n$, and let
$$
\begin{aligned}
{\mathscr V}_{m,n}^{\alpha,\beta} ={\mathscr V}_{m,n}^{\alpha,\beta}(f)
={\mathscr V}_{m,n}^{\alpha,\beta}(f,x)
\ =\frac 1{n+1}\bigl[S_m^{\alpha,\beta}(f,x)+\dots+S_{m+n}^{\alpha,\beta}(f,x)\bigr]
\end{aligned}
$$
be the Vallée Poussin means for Fourier–Jacobi sums. It was proved that if $0$, then there exists a constant $c=c(\alpha,\beta,a,b)$ such that $\|{\mathscr V}_{m,n}^{\alpha,\beta}\|\le c$, where $\|{V}_{m,n}^{\alpha,\beta}\|$ is the norm of the operator ${\mathscr V}_{m,n}^{\alpha,\beta}$ in $C[-1,1]$.
@article{MZM_1996_60_4_a7,
author = {I. I. Sharapudinov and I. A. Vagabov},
title = {Convergence of the {Vall\'ee--Poussin} means for {Fourier--Jacobi} sums},
journal = {Matemati\v{c}eskie zametki},
pages = {569--586},
publisher = {mathdoc},
volume = {60},
number = {4},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a7/}
}
I. I. Sharapudinov; I. A. Vagabov. Convergence of the Vall\'ee--Poussin means for Fourier--Jacobi sums. Matematičeskie zametki, Tome 60 (1996) no. 4, pp. 569-586. http://geodesic.mathdoc.fr/item/MZM_1996_60_4_a7/