Strictly pseudoconvex domains and algebraic varieties
Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 414-422.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we consider applications of strictly pseudoconvex domains to the problems of algebraicity and rationality. We give a new proof of the Kodaira theorem on the algebraicity of a surface and we also prove a multidimensional version of this theorem. Theorems analogous to the Hodge index theorem and the Lefschetz theorem about $(1,1)$-classes are obtained for strictly pseudoconvex domains. Conjectures on the geometry of strictly pseudoconvex domains on algebraic surfaces are formulated.
@article{MZM_1996_60_3_a8,
     author = {S. Yu. Nemirovski},
     title = {Strictly pseudoconvex domains and algebraic varieties},
     journal = {Matemati\v{c}eskie zametki},
     pages = {414--422},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a8/}
}
TY  - JOUR
AU  - S. Yu. Nemirovski
TI  - Strictly pseudoconvex domains and algebraic varieties
JO  - Matematičeskie zametki
PY  - 1996
SP  - 414
EP  - 422
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a8/
LA  - ru
ID  - MZM_1996_60_3_a8
ER  - 
%0 Journal Article
%A S. Yu. Nemirovski
%T Strictly pseudoconvex domains and algebraic varieties
%J Matematičeskie zametki
%D 1996
%P 414-422
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a8/
%G ru
%F MZM_1996_60_3_a8
S. Yu. Nemirovski. Strictly pseudoconvex domains and algebraic varieties. Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 414-422. http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a8/

[1] Grauert G., “Modifikatsii i isklyuchitelnye analiticheskie prostranstva”, Kompleksnye prostranstva, Mir, M., 1965, 205–299 | MR

[2] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR

[3] Suzuki O., “Neighborhoods of a smooth compact algebraic curve embedded in a $2$-dimensional complex manifold”, Publ. Res. Inst. Math. Sci. Ser. A, 11:1 (1975), 185–199 | DOI | MR | Zbl

[4] Shafarevich I. R., Osnovy algebraicheskoi geometrii, T. 1, 2, Nauka, M., 1986 | MR

[5] Kodaira K., “O kompaktnykh komleksno-analiticheskikh poverkhnostyakh, I”, Matematika, 6:6 (1962) | MR

[6] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, T. 1, 2, Mir, M., 1982 | MR

[7] Barth W., Peters C., Van de Ven A., Compact complex surfaces, Springer, N. Y., 1984 | MR | Zbl

[8] Uells R., Differentsialnoe ischislenie na kompleksnom mnogoobrazii, Mir, M., 1976

[9] Grauert H., Remmert R., Coherent analytic sheaves, Springer, N. Y., 1984 | MR | Zbl

[10] Ivashkovich S., Shevchishin V., Pseudoholomorphic curves and envelopes of meromorphy, Preprint, Bochum, 1994