Unique solvability of the Cauchy problem for certain quasilinear pseudoparabolic equations
Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 356-362
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the Cauchy problem in the layer $\Pi_T={\mathbb R}^n\times[0,T]$ for the equation
$$
u_t=c\Delta u_t+\Delta\varphi(u),
$$
where $c$ is a positive constant and the function $\varphi(p)$ belongs to $C^1({\mathbb R}_+)$ and has a nonnegative monotone non-decreasing derivative. The unique solvability of this Cauchy problem is established for the class of nonnegative functions $u(x,t)\in C_{x,t}^{2,1}(\Pi_T)$ with the properties:
\begin{align*}
\varphi'\bigl(u(x,t)\bigr) \le M_1(1+|x|^2),
\\
\|u_t(x,t)| \le M_2(1+|x|^2)^\beta\qquad
(\beta >0).
\end{align*}
@article{MZM_1996_60_3_a2,
author = {A. L. Gladkov},
title = {Unique solvability of the {Cauchy} problem for certain quasilinear pseudoparabolic equations},
journal = {Matemati\v{c}eskie zametki},
pages = {356--362},
publisher = {mathdoc},
volume = {60},
number = {3},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a2/}
}
A. L. Gladkov. Unique solvability of the Cauchy problem for certain quasilinear pseudoparabolic equations. Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 356-362. http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a2/