Unique solvability of the Cauchy problem for certain quasilinear pseudoparabolic equations
Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 356-362
Cet article a éte moissonné depuis la source Math-Net.Ru
We study the Cauchy problem in the layer $\Pi_T={\mathbb R}^n\times[0,T]$ for the equation $$ u_t=c\Delta u_t+\Delta\varphi(u), $$ where $c$ is a positive constant and the function $\varphi(p)$ belongs to $C^1({\mathbb R}_+)$ and has a nonnegative monotone non-decreasing derivative. The unique solvability of this Cauchy problem is established for the class of nonnegative functions $u(x,t)\in C_{x,t}^{2,1}(\Pi_T)$ with the properties: \begin{align*} \varphi'\bigl(u(x,t)\bigr) &\le M_1(1+|x|^2), \\ \|u_t(x,t)| & \le M_2(1+|x|^2)^\beta\qquad (\beta >0). \end{align*}
@article{MZM_1996_60_3_a2,
author = {A. L. Gladkov},
title = {Unique solvability of the {Cauchy} problem for certain quasilinear pseudoparabolic equations},
journal = {Matemati\v{c}eskie zametki},
pages = {356--362},
year = {1996},
volume = {60},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a2/}
}
A. L. Gladkov. Unique solvability of the Cauchy problem for certain quasilinear pseudoparabolic equations. Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 356-362. http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a2/
[1] Gilev V. D., Reshenie obobschennogo uravneniya Bussineska v teorii filtratsii zhidkosti so svobodnoi poverkhnostyu, Diss. ... k. f.-m. n., M., 1979
[2] Furaev V. Z., O razreshimosti kraevykh zadach i zadachi Koshi dlya obobschennogo uravneniya Bussineska v teorii nestatsionarnoi filtratsii, Diss. ... k. f.-m. n., M., 1983 | Zbl
[3] Gladkov A. L., “Zadacha Koshi v klassakh rastuschikh funktsii dlya nekotorykh nelineinykh psevdoparabolicheskikh uravnenii”, Differents. uravneniya, 24:2 (1988), 277–288 | MR | Zbl
[4] Vatson G. N., Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949
[5] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973