Unique solvability of the Cauchy problem for certain quasilinear pseudoparabolic equations
Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 356-362.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Cauchy problem in the layer $\Pi_T={\mathbb R}^n\times[0,T]$ for the equation $$ u_t=c\Delta u_t+\Delta\varphi(u), $$ where $c$ is a positive constant and the function $\varphi(p)$ belongs to $C^1({\mathbb R}_+)$ and has a nonnegative monotone non-decreasing derivative. The unique solvability of this Cauchy problem is established for the class of nonnegative functions $u(x,t)\in C_{x,t}^{2,1}(\Pi_T)$ with the properties: \begin{align*} \varphi'\bigl(u(x,t)\bigr) \le M_1(1+|x|^2), \\ \|u_t(x,t)| \le M_2(1+|x|^2)^\beta\qquad (\beta >0). \end{align*}
@article{MZM_1996_60_3_a2,
     author = {A. L. Gladkov},
     title = {Unique solvability of the {Cauchy} problem for certain quasilinear pseudoparabolic equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {356--362},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a2/}
}
TY  - JOUR
AU  - A. L. Gladkov
TI  - Unique solvability of the Cauchy problem for certain quasilinear pseudoparabolic equations
JO  - Matematičeskie zametki
PY  - 1996
SP  - 356
EP  - 362
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a2/
LA  - ru
ID  - MZM_1996_60_3_a2
ER  - 
%0 Journal Article
%A A. L. Gladkov
%T Unique solvability of the Cauchy problem for certain quasilinear pseudoparabolic equations
%J Matematičeskie zametki
%D 1996
%P 356-362
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a2/
%G ru
%F MZM_1996_60_3_a2
A. L. Gladkov. Unique solvability of the Cauchy problem for certain quasilinear pseudoparabolic equations. Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 356-362. http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a2/

[1] Gilev V. D., Reshenie obobschennogo uravneniya Bussineska v teorii filtratsii zhidkosti so svobodnoi poverkhnostyu, Diss. ... k. f.-m. n., M., 1979

[2] Furaev V. Z., O razreshimosti kraevykh zadach i zadachi Koshi dlya obobschennogo uravneniya Bussineska v teorii nestatsionarnoi filtratsii, Diss. ... k. f.-m. n., M., 1983 | Zbl

[3] Gladkov A. L., “Zadacha Koshi v klassakh rastuschikh funktsii dlya nekotorykh nelineinykh psevdoparabolicheskikh uravnenii”, Differents. uravneniya, 24:2 (1988), 277–288 | MR | Zbl

[4] Vatson G. N., Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949

[5] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973