Sharp Jackson--Stechkin inequality in $L^2$ for multidimensional spheres
Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 333-355

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the Jackson–Stechkin inequality $$ E_{n-1}(f)\omega_r(f,2\tau_{n,\lambda}), \qquad n\ge1, \quad m\ge5, \quad r\ge1, $$ $f\in L^2(\mathbb S^{m-1})$, $f\not\equiv\textrm{const}$, which is sharp for each $n=2,3,\dots$; here $E_{n-1}(f)$ is the best approximation of a function $f$ by spherical polynomials of degree $\le n-1$, $\omega_r(f,\tau)$ is the $r$th modulus of continuity of $f$ based on the translations $$ s_tf(x)=\frac 1{|\mathbb S^{m-2}|}\int_{\mathbb S^{m-2}}f(x\cos t+\xi\sin t)\,d\xi, \qquad t\in\mathbb R, \quad x\in\mathbb S^{m-1}, $$ $\mathbb S^{m-2}=\mathbb S^{m-2}_x=\bigl\{\xi\in \mathbb S^{m-1}:x\cdot\xi=0\bigr\}$, $|\mathbb S^{m-2}|$ is the measure of the unit Euclidean sphere $\mathbb S^{m-2}$, $\lambda=(m-2)/2$ and $\tau_{n,\lambda}$ is the first positive zero of the Gegenbauer cosine polynomial $C^\lambda_n(\cos t)$ .
@article{MZM_1996_60_3_a1,
     author = {A. G. Babenko},
     title = {Sharp {Jackson--Stechkin} inequality in $L^2$ for multidimensional spheres},
     journal = {Matemati\v{c}eskie zametki},
     pages = {333--355},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a1/}
}
TY  - JOUR
AU  - A. G. Babenko
TI  - Sharp Jackson--Stechkin inequality in $L^2$ for multidimensional spheres
JO  - Matematičeskie zametki
PY  - 1996
SP  - 333
EP  - 355
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a1/
LA  - ru
ID  - MZM_1996_60_3_a1
ER  - 
%0 Journal Article
%A A. G. Babenko
%T Sharp Jackson--Stechkin inequality in $L^2$ for multidimensional spheres
%J Matematičeskie zametki
%D 1996
%P 333-355
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a1/
%G ru
%F MZM_1996_60_3_a1
A. G. Babenko. Sharp Jackson--Stechkin inequality in $L^2$ for multidimensional spheres. Matematičeskie zametki, Tome 60 (1996) no. 3, pp. 333-355. http://geodesic.mathdoc.fr/item/MZM_1996_60_3_a1/