Flat modules and rings finitely generated as modules over their center
Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 254-277.

Voir la notice de l'article provenant de la source Math-Net.Ru

A module is called distributive (is said to be a chain module) if the lattice of all its submodules is distributive (is a chain). Let a ring $A$ be a finitely generated module over its unitary central subring $R$. We prove the equivalence of the following conditions: (1) $A$ is a right or left distributive semiprime ring; (2) for any maximal ideal $M$ of a subring $R$ central in $A$, the ring of quotients $A_M$ is a finite direct product of semihereditary Bézout domains whose quotient rings by the Jacobson radicals are finite direct products of skew fields; (3) all right ideals and all left ideals of the ring $A$ are flat (right and left) modules over the ring $A$, and $A$ is a distributive ring, without nonzero nilpotent elements, all of whose quotient rings by prime ideals are semihereditary orders in skew fields.
@article{MZM_1996_60_2_a7,
     author = {A. A. Tuganbaev},
     title = {Flat modules and rings finitely generated as modules over their center},
     journal = {Matemati\v{c}eskie zametki},
     pages = {254--277},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a7/}
}
TY  - JOUR
AU  - A. A. Tuganbaev
TI  - Flat modules and rings finitely generated as modules over their center
JO  - Matematičeskie zametki
PY  - 1996
SP  - 254
EP  - 277
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a7/
LA  - ru
ID  - MZM_1996_60_2_a7
ER  - 
%0 Journal Article
%A A. A. Tuganbaev
%T Flat modules and rings finitely generated as modules over their center
%J Matematičeskie zametki
%D 1996
%P 254-277
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a7/
%G ru
%F MZM_1996_60_2_a7
A. A. Tuganbaev. Flat modules and rings finitely generated as modules over their center. Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 254-277. http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a7/

[1] Jensen C. U., “A remark on arithmetical rings”, Proc. Amer. Math. Soc., 15:6 (1964), 951–954 | DOI | MR | Zbl

[2] Feis K., Algebra: koltsa, moduli i kategorii, T. 1, Mir, M., 1977

[3] Tuganbaev A. A., “Distributivnye sprava i sleva koltsa”, Matem. zametki, 58:4 (1995), 604–627 | MR | Zbl

[4] Rowen L. H., Ring theory, Student edition, Academic Press, Boston, 1991 | Zbl

[5] Bass Kh., Algebraicheskaya $K$-teoriya, Mir, M., 1973 | Zbl

[6] Burbaki N., Kommutativnaya algebra, Mir, M., 1971

[7] Kash F., Moduli i koltsa, Mir, M., 1981

[8] Wisbauer R., Foundations of module and ring theory, Gordon and Breach, Philadelphia, 1991 | Zbl

[9] Stenström B., Rings of quotients: an introduction to methods of ring theory, Springer-Verlag, Berlin, 1975 | Zbl

[10] Lambek I., Koltsa i moduli, Mir, M., 1971 | Zbl

[11] Dubrovin N. I., The rational closure of group rings of left-ordered groups, Gerhard Mercator Universität Duisburg Gesamthochschule, 1994 | Zbl