Some remarks on the modulus of continuity of a conformal mapping of the disk onto a~Jordan domain
Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 176-184
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $d(\Gamma;z,t)$ be the smallest diameter of the arcs of a Jordan curve $\Gamma$ with ends $z$ and $t$. Consider the rapidity of decreasing of $d(\Gamma;\rho)=\sup\bigl\{d(\Gamma;z,t): z,t\in \Gamma, |z-t|\le\rho\bigr\}$ (as $\rho\searrow0$, $\rho\ge0$) as a measure of “nicety” of $\Gamma$. Let $g(x)$ ($x\ge0$) be a continuous and nondecreasing function such that $g(x)\ge x$, $g(0)=0$. Put $\overline g(x):=g(x)+x$, $h(x):=\bigl(\overline g(x^{1/2})\bigr)^2$. Let $H(x)$ be an arbitrary primitive of $1/h^{-1}(x)$. Note that the function $H^{-1}(x)$ is positive and increasing on $(-\infty,+\infty)$, $H^{-1}(x)\to0$ as $x\to-\infty$ and $H^{-1}(x)\to+\infty$ as $x\to+\infty$. The following statement is proved in the paper.
@article{MZM_1996_60_2_a1,
author = {E. P. Dolzhenko},
title = {Some remarks on the modulus of continuity of a conformal mapping of the disk onto {a~Jordan} domain},
journal = {Matemati\v{c}eskie zametki},
pages = {176--184},
publisher = {mathdoc},
volume = {60},
number = {2},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a1/}
}
TY - JOUR AU - E. P. Dolzhenko TI - Some remarks on the modulus of continuity of a conformal mapping of the disk onto a~Jordan domain JO - Matematičeskie zametki PY - 1996 SP - 176 EP - 184 VL - 60 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a1/ LA - ru ID - MZM_1996_60_2_a1 ER -
E. P. Dolzhenko. Some remarks on the modulus of continuity of a conformal mapping of the disk onto a~Jordan domain. Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 176-184. http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a1/