Some remarks on the modulus of continuity of a conformal mapping of the disk onto a~Jordan domain
Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 176-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $d(\Gamma;z,t)$ be the smallest diameter of the arcs of a Jordan curve $\Gamma$ with ends $z$ and $t$. Consider the rapidity of decreasing of $d(\Gamma;\rho)=\sup\bigl\{d(\Gamma;z,t): z,t\in \Gamma, |z-t|\le\rho\bigr\}$ (as $\rho\searrow0$, $\rho\ge0$) as a measure of “nicety” of $\Gamma$. Let $g(x)$ ($x\ge0$) be a continuous and nondecreasing function such that $g(x)\ge x$, $g(0)=0$. Put $\overline g(x):=g(x)+x$, $h(x):=\bigl(\overline g(x^{1/2})\bigr)^2$. Let $H(x)$ be an arbitrary primitive of $1/h^{-1}(x)$. Note that the function $H^{-1}(x)$ is positive and increasing on $(-\infty,+\infty)$, $H^{-1}(x)\to0$ as $x\to-\infty$ and $H^{-1}(x)\to+\infty$ as $x\to+\infty$. The following statement is proved in the paper.
@article{MZM_1996_60_2_a1,
     author = {E. P. Dolzhenko},
     title = {Some remarks on the modulus of continuity of a conformal mapping of the disk onto {a~Jordan} domain},
     journal = {Matemati\v{c}eskie zametki},
     pages = {176--184},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a1/}
}
TY  - JOUR
AU  - E. P. Dolzhenko
TI  - Some remarks on the modulus of continuity of a conformal mapping of the disk onto a~Jordan domain
JO  - Matematičeskie zametki
PY  - 1996
SP  - 176
EP  - 184
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a1/
LA  - ru
ID  - MZM_1996_60_2_a1
ER  - 
%0 Journal Article
%A E. P. Dolzhenko
%T Some remarks on the modulus of continuity of a conformal mapping of the disk onto a~Jordan domain
%J Matematičeskie zametki
%D 1996
%P 176-184
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a1/
%G ru
%F MZM_1996_60_2_a1
E. P. Dolzhenko. Some remarks on the modulus of continuity of a conformal mapping of the disk onto a~Jordan domain. Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 176-184. http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a1/

[1] Tamrazov P. M., “Konturnye i telesnye strukturnye svoistva golomorfnykh funktsii kompleksnogo peremennogo”, UMN, 28:1 (1973), 131–161 | MR | Zbl

[2] Lavrentev M. A., “O nepreryvnosti odnolistnykh funktsii v zamknutykh oblastyakh”, Dokl. AN SSSR, 4:5 (1936), 207–209

[3] Warschawski S. E., “On differentiability at the boundary in conformal mapping”, Proc. Amer. Math. Soc., 12:4 (1961), 615–620 | DOI | MR

[4] Uryson P. S., “Zavisimost mezhdu srednei shirinoi i ob'emom vypuklykh tel v $n$-mernom prostranstve”, Matem. sb., 31 (1924), 477–486

[5] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.–L., 1950

[6] Alfors L., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969

[7] Dolzhenko E. P., “O granichnom povedenii konformnykh otobrazhenii kruga na zhordanovu oblast”, Tezisy dokladov shkoly-konferentsii “Teoriya funktsii i ee prilozheniya”, Kazanskii fond “Matematika”, Kazan, 1995, 24–27