Obstructions to splitting manifolds with infinite fundamental group
Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 163-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we calculate the obstruction groups to splitting along one-sided submanifolds when the fundamental group of the submanifold is isomorphic to $\mathbb Z$ or $\mathbb Z\oplus\mathbb Z/2$. We also consider the case where the obstruction group is not a Browder–Livesey group. We construct a new Levine braid that connects the Wall groups to the obstruction group for splitting. We solve the problem of the mutual disposition of images of several natural maps in Wall groups for finite 2-groups with exceptional orientation character.
@article{MZM_1996_60_2_a0,
     author = {P. M. Akhmet'ev and Yu. V. Muranov},
     title = {Obstructions to splitting manifolds with infinite fundamental group},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--175},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a0/}
}
TY  - JOUR
AU  - P. M. Akhmet'ev
AU  - Yu. V. Muranov
TI  - Obstructions to splitting manifolds with infinite fundamental group
JO  - Matematičeskie zametki
PY  - 1996
SP  - 163
EP  - 175
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a0/
LA  - ru
ID  - MZM_1996_60_2_a0
ER  - 
%0 Journal Article
%A P. M. Akhmet'ev
%A Yu. V. Muranov
%T Obstructions to splitting manifolds with infinite fundamental group
%J Matematičeskie zametki
%D 1996
%P 163-175
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a0/
%G ru
%F MZM_1996_60_2_a0
P. M. Akhmet'ev; Yu. V. Muranov. Obstructions to splitting manifolds with infinite fundamental group. Matematičeskie zametki, Tome 60 (1996) no. 2, pp. 163-175. http://geodesic.mathdoc.fr/item/MZM_1996_60_2_a0/

[1] Wall C. T. C., Surgery on Compact Manifolds, London Acad. Press, London, 1970 | Zbl

[2] Ranicki A. A., “Exact sequences in the algebraic theory of surgery”, Math. Notes, 26, 1981 | MR | Zbl

[3] Akhmetev P. M., “Rasscheplenie gomotopicheskikh ekvivalentnostei vdol odnostoronnego podmnogoobraziya korazmernosti $1$”, Izv. AN SSSR. Ser. matem., 51 (1987), 211–241 | Zbl

[4] Hambleton I., “Projective surgery obstructions on closed manifolds”, Lecture Notes, 943, 1982, 102–131

[5] Ranicki A. A., Algebraic $L$-theory and topological manifolds, Cambridge Univ. Press, Cambridge, 1992

[6] Kharshiladze A. F., “Perestroika mnogoobrazii s konechnymi fundamentalnymi gruppami”, UMN, 42 (1987), 55–85 | MR | Zbl

[7] Kharshiladze A. F., “Ermitova $K$-teoriya i kvadratichnye rasshireniya kolets”, Tr. MMO, 41, URSS, M., 1980, 3–36 | MR | Zbl

[8] Ranicki A. A., The $L$-theory of twisted quadratic extensions. Appendix 4, Preprint, Princeton, 1981 | Zbl

[9] Muranov Yu. V., Kharshiladze A. F., “Gruppy Braudera–Livsi abelevykh $2$-grupp”, Matem. sb., 181 (1990), 1061–1098 | Zbl

[10] Muranov Yu. V., “Estestvennye otobrazheniya otnositelnykh grupp Uolla”, Matem. sb., 183 (1992), 39–52

[11] Khemblton I., Kharshiladze A. F., “Spektralnaya posledovatelnost v teorii perestroek”, Matem. sb., 183 (1992), 3–14

[12] Hambleton I., Taylor L., Williams B., “An Introduction to maps between surgery obstruction groups”, Lecture Notes, 1051, 1984, 49–127 | MR | Zbl

[13] Hambleton I., Ranicki A. A., Taylor L., “Round L-theory”, J. Pure Appl. Algebra, 47 (1987), 131–154 | DOI | MR | Zbl

[14] Akhmetev P. M., Zadacha rasschepleniya gomotopicheskikh ekvivalentnostei, Diss. ... k. f.-m. n., MIAN, M., 1988

[15] Kharshiladze A. F., “Obobschennyi invariant Braudera–Livsi”, Izv. AN SSSR. Ser. matem., 51 (1987), 379–401 | Zbl

[16] Wall C. T. C., “On the classification of Hermitian forms. VI: Group rings”, Ann. of Math., 103 (1976), 1–80 | DOI | MR | Zbl

[17] Muranov Yu. V., “Prepyatstviya k perestroikam dvulistnykh nakrytii”, Matem. sb., 131 (173) (1986), 347–356 | Zbl