Computation of local symmetries of second-order ordinary differential equations by the Cartan equivalence method
Matematičeskie zametki, Tome 60 (1996) no. 1, pp. 75-91

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cartan equivalence method is used to find out if a given equation has a nontrivial Lie group of point symmetries. In particular, we compute invariants that permit one to recognize equations with a three-dimensional symmetry group. An effective method to transform the Lie system (the system of partial differential equations to be satisfied by the infinitesimal point symmetries) into a formally integrable form is given. For equations with a three-dimensional symmetry group, the formally integrable form of the Lie system is found explicitly.
@article{MZM_1996_60_1_a7,
     author = {Yu. R. Romanovskii},
     title = {Computation of local symmetries of second-order ordinary differential equations by the {Cartan} equivalence method},
     journal = {Matemati\v{c}eskie zametki},
     pages = {75--91},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a7/}
}
TY  - JOUR
AU  - Yu. R. Romanovskii
TI  - Computation of local symmetries of second-order ordinary differential equations by the Cartan equivalence method
JO  - Matematičeskie zametki
PY  - 1996
SP  - 75
EP  - 91
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a7/
LA  - ru
ID  - MZM_1996_60_1_a7
ER  - 
%0 Journal Article
%A Yu. R. Romanovskii
%T Computation of local symmetries of second-order ordinary differential equations by the Cartan equivalence method
%J Matematičeskie zametki
%D 1996
%P 75-91
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a7/
%G ru
%F MZM_1996_60_1_a7
Yu. R. Romanovskii. Computation of local symmetries of second-order ordinary differential equations by the Cartan equivalence method. Matematičeskie zametki, Tome 60 (1996) no. 1, pp. 75-91. http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a7/