Computation of local symmetries of second-order ordinary differential equations by the Cartan equivalence method
Matematičeskie zametki, Tome 60 (1996) no. 1, pp. 75-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cartan equivalence method is used to find out if a given equation has a nontrivial Lie group of point symmetries. In particular, we compute invariants that permit one to recognize equations with a three-dimensional symmetry group. An effective method to transform the Lie system (the system of partial differential equations to be satisfied by the infinitesimal point symmetries) into a formally integrable form is given. For equations with a three-dimensional symmetry group, the formally integrable form of the Lie system is found explicitly.
@article{MZM_1996_60_1_a7,
     author = {Yu. R. Romanovskii},
     title = {Computation of local symmetries of second-order ordinary differential equations by the {Cartan} equivalence method},
     journal = {Matemati\v{c}eskie zametki},
     pages = {75--91},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a7/}
}
TY  - JOUR
AU  - Yu. R. Romanovskii
TI  - Computation of local symmetries of second-order ordinary differential equations by the Cartan equivalence method
JO  - Matematičeskie zametki
PY  - 1996
SP  - 75
EP  - 91
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a7/
LA  - ru
ID  - MZM_1996_60_1_a7
ER  - 
%0 Journal Article
%A Yu. R. Romanovskii
%T Computation of local symmetries of second-order ordinary differential equations by the Cartan equivalence method
%J Matematičeskie zametki
%D 1996
%P 75-91
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a7/
%G ru
%F MZM_1996_60_1_a7
Yu. R. Romanovskii. Computation of local symmetries of second-order ordinary differential equations by the Cartan equivalence method. Matematičeskie zametki, Tome 60 (1996) no. 1, pp. 75-91. http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a7/

[1] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978

[2] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989 | Zbl

[3] Liouville R., Jour. de l'Ecole Politechnique, 59 (1889), 7–88

[4] Tresse M. A., Determination des Invariants Ponctuels de l'Equation Differentielle Ordinare du Second Ordre $y''=\omega(x,y,y')$, Hizrel, Leipzig, 1896

[5] Cartan E., Bull. Soc. Math. France, 52 (1924), 205–241 | MR

[6] Cartan E., Lecon sur la theorie des espaces a connexion projective, Gauthier-Villars, Paris, 1937

[7] Grissom C., Thompson G., Wilkens G., J. Differential Equations, 77 (1989), 1–15 | DOI | MR | Zbl

[8] Hsu L., Kamran N., Proc. London Math. Soc., 58:3 (1989), 387–416 | DOI | MR | Zbl

[9] Alekseevskii D. V., Vinogradov A. M., Lychagin V. V., “Osnovnye idei i ponyatiya differentsialnoi geometrii”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 28, VINITI, M., 1988

[10] Riquer C., Les systemes d'equations aux derivees partielles, Gauthier-Villars, Paris, 1910

[11] Janet M., Lecons sur les systemes d'equations aux derivees, Gauthier-Villars, Paris, 1929

[12] Thomas J., Differential Systems, AMS Colloquium publication, 21, N. Y., 1937

[13] Topunov V. L., Acta Appl. Math., 16 (1989), 191–206 | DOI | MR | Zbl

[14] Ibragimov N. Kh., Opyt gruppovogo analiza obyknovennykh differentsialnykh uravnenii, Novoe v nauke i tekhnike. Matematika i kibernetika, 7, Znanie, M., 1991 | Zbl

[15] Lie S., Gesammelte Abhandlugen, V. 6, Leipzig–Oslo, 1927

[16] Duzhin S. V., Lychagin V. V., Acta Appl. Math., 24 (1991), 29–57 | MR | Zbl

[17] Cartan E., “Les problemes d'equivalence”, Oeuvres Completes, P. II, V. 2, Gauthier-Villars, Paris, 1953, 1311–1334

[18] Gardner R. B., The Method of Equivalence and Its Applications, SIAM, Philadelphia, 1989

[19] Stenberg S., Lektsii po differentsialnoi geometrii, Mir, M., 1970

[20] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, Nauka, M., 1986