Behavior at infinity of solutions of second-order nonlinear equations of a~particular class
Matematičeskie zametki, Tome 60 (1996) no. 1, pp. 30-39
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\Omega$ be an arbitrary, possibly unbounded, open subset of $\mathbb R^n$, and let $L$ be an elliptic operator of the form
$$
L=\sum_{i,j=1}^n
\frac\partial{\partial x_i}
\biggl(a_{ij}(x)\frac\partial{\partial x_j}\biggr).
$$
The behavior at infinity of the solutions of the equation $Lu=f(|u|)\operatorname{sign}u$ in $\Omega$ is studied, where $f$ is a measurable function. In particular, given certain conditions at infinity, the uniqueness theorem for the solution of the first boundary value problem is proved.
@article{MZM_1996_60_1_a3,
author = {A. A. Kon'kov},
title = {Behavior at infinity of solutions of second-order nonlinear equations of a~particular class},
journal = {Matemati\v{c}eskie zametki},
pages = {30--39},
publisher = {mathdoc},
volume = {60},
number = {1},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a3/}
}
A. A. Kon'kov. Behavior at infinity of solutions of second-order nonlinear equations of a~particular class. Matematičeskie zametki, Tome 60 (1996) no. 1, pp. 30-39. http://geodesic.mathdoc.fr/item/MZM_1996_60_1_a3/