On the bore radius for minimal surfaces
Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 909-913.

Voir la notice de l'article provenant de la source Math-Net.Ru

A least upper bound for the inner radius $R$ of an opening in a complete minimal hypersurface contained in a parallel layer is given. Namely, if $\Delta$ is the width of this layer, then $R\le\Delta/(2c_p)$, where $c_p$ is an absolute constant depending only on the dimension $p$ of the minimal hypersurface.
@article{MZM_1996_59_6_a9,
     author = {V. G. Tkachev},
     title = {On the bore radius for minimal surfaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {909--913},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a9/}
}
TY  - JOUR
AU  - V. G. Tkachev
TI  - On the bore radius for minimal surfaces
JO  - Matematičeskie zametki
PY  - 1996
SP  - 909
EP  - 913
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a9/
LA  - ru
ID  - MZM_1996_59_6_a9
ER  - 
%0 Journal Article
%A V. G. Tkachev
%T On the bore radius for minimal surfaces
%J Matematičeskie zametki
%D 1996
%P 909-913
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a9/
%G ru
%F MZM_1996_59_6_a9
V. G. Tkachev. On the bore radius for minimal surfaces. Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 909-913. http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a9/

[1] Hoffman D., Meeks W. H., “Embedded minimal surfaces of finite topology”, Ann. Math., 131 (1990), 1–34 | DOI | MR | Zbl

[2] Dierkes U., “Maximum principles and nonexistence results for minimal submanifolds”, Manuscr. Math., 69 (1990), 203–218 | DOI | MR | Zbl

[3] Vedenyapin A. D., Milyukov V. M., “Vneshnie razmery trubchatykh minimalnykh giperpoverkhnostei”, Matem. sb., 131:2 (1986), 240–250 | Zbl

[4] Milyukov V. M., Tkachev V. G., “Nekotorye svoistva trubchatykh minimalnykh poverkhnostei proizvolnoi korazmernosti”, Matem. sb., 180:9 (1989), 1278–1295

[5] Klyachin V. A., “Otsenka protyazhennosti trubchatykh minimalnykh poverkhnostei proizvolnoi korazmernosti”, Sib. matem. zh., 1992, no. 33, 201–205 | MR | Zbl

[6] Tkachev V. G., Vneshnie otsenki radiusa obkhvata ellipticheskikh giperpoverkhnostei, Dep. VINITI, No 2031–V92 | Zbl

[7] Gilbarg D., Trudinger M., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | Zbl