On the bore radius for minimal surfaces
Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 909-913

Voir la notice de l'article provenant de la source Math-Net.Ru

A least upper bound for the inner radius $R$ of an opening in a complete minimal hypersurface contained in a parallel layer is given. Namely, if $\Delta$ is the width of this layer, then $R\le\Delta/(2c_p)$, where $c_p$ is an absolute constant depending only on the dimension $p$ of the minimal hypersurface.
@article{MZM_1996_59_6_a9,
     author = {V. G. Tkachev},
     title = {On the bore radius for minimal surfaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {909--913},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a9/}
}
TY  - JOUR
AU  - V. G. Tkachev
TI  - On the bore radius for minimal surfaces
JO  - Matematičeskie zametki
PY  - 1996
SP  - 909
EP  - 913
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a9/
LA  - ru
ID  - MZM_1996_59_6_a9
ER  - 
%0 Journal Article
%A V. G. Tkachev
%T On the bore radius for minimal surfaces
%J Matematičeskie zametki
%D 1996
%P 909-913
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a9/
%G ru
%F MZM_1996_59_6_a9
V. G. Tkachev. On the bore radius for minimal surfaces. Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 909-913. http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a9/