Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1996_59_6_a5, author = {P. I. Naumkin and I. A. Shishmarev}, title = {Asymptotics as $t\to\infty$ of the solutions of nonlinear equations with nonsmall initial perturbations}, journal = {Matemati\v{c}eskie zametki}, pages = {855--864}, publisher = {mathdoc}, volume = {59}, number = {6}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a5/} }
TY - JOUR AU - P. I. Naumkin AU - I. A. Shishmarev TI - Asymptotics as $t\to\infty$ of the solutions of nonlinear equations with nonsmall initial perturbations JO - Matematičeskie zametki PY - 1996 SP - 855 EP - 864 VL - 59 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a5/ LA - ru ID - MZM_1996_59_6_a5 ER -
%0 Journal Article %A P. I. Naumkin %A I. A. Shishmarev %T Asymptotics as $t\to\infty$ of the solutions of nonlinear equations with nonsmall initial perturbations %J Matematičeskie zametki %D 1996 %P 855-864 %V 59 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a5/ %G ru %F MZM_1996_59_6_a5
P. I. Naumkin; I. A. Shishmarev. Asymptotics as $t\to\infty$ of the solutions of nonlinear equations with nonsmall initial perturbations. Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 855-864. http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a5/
[1] Naumkin P. I., Shishmarev I. A., Nonlinear nonlocal equations in the theory of waves, Trans. Amer. Math. Soc., 133, Providence, 1994 | MR | Zbl
[2] Naumkin P. I., Shishmarev I. A., “Asimptotika pri $t\to\infty$ resheniya nelineinogo uravneniya so slaboi dissipatsiei i dispersiei”, Izv. RAN. Ser. matem., 57:6 (1993), 52–63 | MR | Zbl
[3] Burgers J. M., “A mathematical model illustrating the theory of turbulence”, Adv. Appl. Mech., 1 (1948), 171–199 | DOI | MR
[4] Ostrovsky L. A., “Short-wave asymptotics for weak shock waves and solitons in mechanics”, Internat. J. Non-Linear Mech., 11 (1976), 401–416 | DOI | MR | Zbl
[5] Ott E., Sudan R. N., “Nonlinear theory of ion acoutic waves with Landau damping”, Phys. Fluids, 12 (1969), 2388–2394 | DOI | MR | Zbl