Asymptotics as $t\to\infty$ of the solutions of nonlinear equations with nonsmall initial perturbations
Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 855-864.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method is proposed for finding asymptotics as $t\to\infty$ of the solutions of the Cauchy problem for nonlinear evolution equations with nonsmall initial data.
@article{MZM_1996_59_6_a5,
     author = {P. I. Naumkin and I. A. Shishmarev},
     title = {Asymptotics as $t\to\infty$ of the solutions of nonlinear equations with nonsmall initial perturbations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {855--864},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a5/}
}
TY  - JOUR
AU  - P. I. Naumkin
AU  - I. A. Shishmarev
TI  - Asymptotics as $t\to\infty$ of the solutions of nonlinear equations with nonsmall initial perturbations
JO  - Matematičeskie zametki
PY  - 1996
SP  - 855
EP  - 864
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a5/
LA  - ru
ID  - MZM_1996_59_6_a5
ER  - 
%0 Journal Article
%A P. I. Naumkin
%A I. A. Shishmarev
%T Asymptotics as $t\to\infty$ of the solutions of nonlinear equations with nonsmall initial perturbations
%J Matematičeskie zametki
%D 1996
%P 855-864
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a5/
%G ru
%F MZM_1996_59_6_a5
P. I. Naumkin; I. A. Shishmarev. Asymptotics as $t\to\infty$ of the solutions of nonlinear equations with nonsmall initial perturbations. Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 855-864. http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a5/

[1] Naumkin P. I., Shishmarev I. A., Nonlinear nonlocal equations in the theory of waves, Trans. Amer. Math. Soc., 133, Providence, 1994 | MR | Zbl

[2] Naumkin P. I., Shishmarev I. A., “Asimptotika pri $t\to\infty$ resheniya nelineinogo uravneniya so slaboi dissipatsiei i dispersiei”, Izv. RAN. Ser. matem., 57:6 (1993), 52–63 | MR | Zbl

[3] Burgers J. M., “A mathematical model illustrating the theory of turbulence”, Adv. Appl. Mech., 1 (1948), 171–199 | DOI | MR

[4] Ostrovsky L. A., “Short-wave asymptotics for weak shock waves and solitons in mechanics”, Internat. J. Non-Linear Mech., 11 (1976), 401–416 | DOI | MR | Zbl

[5] Ott E., Sudan R. N., “Nonlinear theory of ion acoutic waves with Landau damping”, Phys. Fluids, 12 (1969), 2388–2394 | DOI | MR | Zbl