Cohomology of braid groups with nontrivial coefficients
Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 846-854.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the homology of the braid groups with twisted coefficients and the homology of commutator subgroups of the braid groups are calculated. The main tool is the multiplicative structure on the homology induced by the “addition” of braid groups.
@article{MZM_1996_59_6_a4,
     author = {N. S. Markaryan},
     title = {Cohomology of braid groups with nontrivial coefficients},
     journal = {Matemati\v{c}eskie zametki},
     pages = {846--854},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a4/}
}
TY  - JOUR
AU  - N. S. Markaryan
TI  - Cohomology of braid groups with nontrivial coefficients
JO  - Matematičeskie zametki
PY  - 1996
SP  - 846
EP  - 854
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a4/
LA  - ru
ID  - MZM_1996_59_6_a4
ER  - 
%0 Journal Article
%A N. S. Markaryan
%T Cohomology of braid groups with nontrivial coefficients
%J Matematičeskie zametki
%D 1996
%P 846-854
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a4/
%G ru
%F MZM_1996_59_6_a4
N. S. Markaryan. Cohomology of braid groups with nontrivial coefficients. Matematičeskie zametki, Tome 59 (1996) no. 6, pp. 846-854. http://geodesic.mathdoc.fr/item/MZM_1996_59_6_a4/

[1] Vainshtein F. V., “Kogomologii grupp kos”, Funktsion. analiz i ego prilozh., 12:2 (1978), 72–73 | MR

[2] Vasilev V. A., “Kogomologii grupp kos i slozhnost algoritmov”, Funktsion. analiz i ego prilozh., 22:3 (1988), 15–24 | MR

[3] Frenkel E. V., “Kogomologii kommutanta gruppy kos”, Funktsion. analiz i ego prilozh., 22:3 (1988), 91–92 | MR | Zbl

[4] Fuks D. B., “Kogomologii gruppy kos $\operatorname{mod}2$”, Funktsion. analiz i ego prilozh., 4:2 (1970), 62–73 | MR | Zbl

[5] Cohen F. R., “The homology of $C_{n+1}$-spaces, $n\ge0$”, The homology of iterated loop spaces, Lect. Notes Math., 533, eds. F. R. Cohen, T. J. Lada, J. P. May, Springer-Verlag, New York–Berlin, 1976, 207–353

[6] Leng S., Algebra, Mir, M., 1968