On convergence on the boundary of the unit ball in dual space
Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 753-758.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper some results that are known for extreme points of the unit ball in dual space are carried over to a more general case, namely to the case of the boundary of the ball ($\Gamma\subset B$ is the boundary of the unit ball $B$ in the space dual to $X$ if every $x\in X$ achieves its maximum value on $B$ at some point of $\Gamma$). For example, it is established that if a set is bounded in $X$ and countably compact in $\sigma(X,\Gamma)$, then it is weakly compact in $X$.
@article{MZM_1996_59_5_a10,
     author = {V. I. Rybakov},
     title = {On convergence on the boundary of the unit ball in dual space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {753--758},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a10/}
}
TY  - JOUR
AU  - V. I. Rybakov
TI  - On convergence on the boundary of the unit ball in dual space
JO  - Matematičeskie zametki
PY  - 1996
SP  - 753
EP  - 758
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a10/
LA  - ru
ID  - MZM_1996_59_5_a10
ER  - 
%0 Journal Article
%A V. I. Rybakov
%T On convergence on the boundary of the unit ball in dual space
%J Matematičeskie zametki
%D 1996
%P 753-758
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a10/
%G ru
%F MZM_1996_59_5_a10
V. I. Rybakov. On convergence on the boundary of the unit ball in dual space. Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 753-758. http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a10/

[1] Bourgain J., Talagrand M., “Compacite extremale”, Proc. Amer. Math. Soc., 80 (1980), 68–70 | DOI | MR | Zbl

[2] Khurana S. S., “Point-wise compactness on extreme points”, Proc. Amer. Math. Soc., 83:2 (1981), 347–348 | DOI | MR | Zbl

[3] Rosenthal H., “Point-wise compact subsets of the first Baire class, with some applications to Banach space theory”, Var. Publ. Ser. Math. Inst. Aarhus Univ., 1975, no. 24, 176–187 | Zbl

[4] Simons S., “A convergence theorem with boundary”, Pacific J. Math., 40 (1972), 703–708 | MR | Zbl

[5] Saab E., “Extreme points, separability and weak $K$-analiticity in dual Banach spaces”, J. London Math. Soc., 23 (1981), 165–170 | DOI | MR | Zbl

[6] Grodefroy G., “Boundaries of a convex set and interpolation sets”, Math. Ann., 277 (1987), 173–184 | DOI | MR

[7] Talagrand M., “Espaces de Banach faiblement $K$-analitiques”, Ann. Math., 110:3 (1979), 407–438 | DOI | MR | Zbl

[8] Arkhangelskii A. V., Topologicheskie prostranstva funktsii, Izd-vo MGU, M., 1989

[9] Giles J. R., Convex analysis with application in the differentiation of convex functions, Pitman, London, 1982 | Zbl

[10] Elton J., “Extremely weakly unconditionally convergent series”, Israel J. Math., 40:3–4 (1981), 255–258 | DOI | MR | Zbl

[11] Fonf V. P., “Slabo ekstremalnye svoistva banakhovykh prostranstv”, Matem. zametki, 45:6 (1989), 83–91 | MR

[12] Diestel J., Sequences and series in Banach spaces, Springer-Verlag, New York, 1984 | Zbl

[13] Fonf V. P., “Mnozhestva superpervoi kategorii v banakhovykh prostranstvakh”, Funktsion. analiz i ego prilozh., 25:4 (1991), 66–69 | MR | Zbl