On convergence on the boundary of the unit ball in dual space
Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 753-758

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper some results that are known for extreme points of the unit ball in dual space are carried over to a more general case, namely to the case of the boundary of the ball ($\Gamma\subset B$ is the boundary of the unit ball $B$ in the space dual to $X$ if every $x\in X$ achieves its maximum value on $B$ at some point of $\Gamma$). For example, it is established that if a set is bounded in $X$ and countably compact in $\sigma(X,\Gamma)$, then it is weakly compact in $X$.
@article{MZM_1996_59_5_a10,
     author = {V. I. Rybakov},
     title = {On convergence on the boundary of the unit ball in dual space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {753--758},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a10/}
}
TY  - JOUR
AU  - V. I. Rybakov
TI  - On convergence on the boundary of the unit ball in dual space
JO  - Matematičeskie zametki
PY  - 1996
SP  - 753
EP  - 758
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a10/
LA  - ru
ID  - MZM_1996_59_5_a10
ER  - 
%0 Journal Article
%A V. I. Rybakov
%T On convergence on the boundary of the unit ball in dual space
%J Matematičeskie zametki
%D 1996
%P 753-758
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a10/
%G ru
%F MZM_1996_59_5_a10
V. I. Rybakov. On convergence on the boundary of the unit ball in dual space. Matematičeskie zametki, Tome 59 (1996) no. 5, pp. 753-758. http://geodesic.mathdoc.fr/item/MZM_1996_59_5_a10/