Bounded cohomology of group constructions
Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 546-550.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the singular part $H_b^{2/(2)}(G)$ of the second group of bounded homology of the discrete group $G$ is isomorphic to the space of 2-cocycles that vanish on the diagonal. For groups $G$ representable as HNN-extensions or free products with amalgamation, as well as for groups $G$ with one defining relation, conditions for the infinite-dimensionality of $H_b^{2/(2)}(G)$ are found. Some applications of bounded cohomology to the width problem for verbal subgroups and to the boundedness problem for group presentations are indicated.
@article{MZM_1996_59_4_a5,
     author = {R. I. Grigorchuk},
     title = {Bounded cohomology of group constructions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {546--550},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a5/}
}
TY  - JOUR
AU  - R. I. Grigorchuk
TI  - Bounded cohomology of group constructions
JO  - Matematičeskie zametki
PY  - 1996
SP  - 546
EP  - 550
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a5/
LA  - ru
ID  - MZM_1996_59_4_a5
ER  - 
%0 Journal Article
%A R. I. Grigorchuk
%T Bounded cohomology of group constructions
%J Matematičeskie zametki
%D 1996
%P 546-550
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a5/
%G ru
%F MZM_1996_59_4_a5
R. I. Grigorchuk. Bounded cohomology of group constructions. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 546-550. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a5/

[1] Gromov M., “Volume and bounded cohomology”, Publ. Math. IHES, 56 (1982), 5–100 | MR

[2] Johnson B. E., Cohomology in Banach Algebras, Amer. Math. Soc. Memoirs, 127, 1972 | Zbl

[3] Grigorchuk R. I., “Some results an bounded cohomology”, Combinatorial and Geometric Group Theory (Edinburg, 1993), London Math. Soc. Lecture Notes Ser., 284, Cambridge University Press, Cambridge, 1994, 111–163 | Zbl

[4] Matsumoto S., Morita S., “Bounded cohomology of certain groups of homeomorphisms”, Proc. Amer. Math. Soc., 94 (1985), 539–544 | DOI | MR | Zbl

[5] Bouarich A., “Suites exactes en cohomologie bornee reelle de groupes discrets”, C. R. Acad. Sci. Paris. Ser. 1, 320 (1995) | MR | Zbl

[6] Bardakov V. G., Shirina verbalnykh podgrupp nekotorykh HNN-rasshirenii, Preprint No 9, Novosibirsk, 1995

[7] Newman M., “Unimodular commutators”, Proc. Amer. Math. Soc., 101:4 (1987), 605–609 | DOI | MR | Zbl

[8] Phemtulla A. H., “Commutators of certain finitely generated Solvable groups”, Canad. J. Math., 21:5 (1969), 1160–1164 | MR

[9] Romankov V. A., “O shirine verbalnykh podgrupp razreshimykh grupp”, Algebra i logika, 21:1 (1982) | MR | Zbl

[10] Phemtulla A. H., “A problem of bounded expressibility in free products”, Proc. Camb. Phil. Soc., 64:3 (1968), 573–584 | DOI | MR

[11] Bavard C., “Longueur Stable des commutators”, L'Enseignement Math., 37 (1991), 109–150 | MR | Zbl