Bounded cohomology of group constructions
Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 546-550

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the singular part $H_b^{2/(2)}(G)$ of the second group of bounded homology of the discrete group $G$ is isomorphic to the space of 2-cocycles that vanish on the diagonal. For groups $G$ representable as HNN-extensions or free products with amalgamation, as well as for groups $G$ with one defining relation, conditions for the infinite-dimensionality of $H_b^{2/(2)}(G)$ are found. Some applications of bounded cohomology to the width problem for verbal subgroups and to the boundedness problem for group presentations are indicated.
@article{MZM_1996_59_4_a5,
     author = {R. I. Grigorchuk},
     title = {Bounded cohomology of group constructions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {546--550},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a5/}
}
TY  - JOUR
AU  - R. I. Grigorchuk
TI  - Bounded cohomology of group constructions
JO  - Matematičeskie zametki
PY  - 1996
SP  - 546
EP  - 550
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a5/
LA  - ru
ID  - MZM_1996_59_4_a5
ER  - 
%0 Journal Article
%A R. I. Grigorchuk
%T Bounded cohomology of group constructions
%J Matematičeskie zametki
%D 1996
%P 546-550
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a5/
%G ru
%F MZM_1996_59_4_a5
R. I. Grigorchuk. Bounded cohomology of group constructions. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 546-550. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a5/