Majorants and uniqueness of series in the Franklin system
Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 521-545

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if a series in the Franklin system converges almost everywhere to a function $f(t)$ and the distribution function of the majorant of partial sums satisfies the condition $$ \operatorname{mes}\bigl\{t\in[0,1]:s(t)>\lambda\bigr\} =o\biggl(\frac 1\lambda\biggr) $$ as $\lambda\to\infty$, then this series is a Fourier series for Lebesgue integrable functions $f(t)$. In the general case the coefficients of the series are reconstructed by means of an $A$-integral.
@article{MZM_1996_59_4_a4,
     author = {G. G. Gevorkyan},
     title = {Majorants and uniqueness of series in the {Franklin} system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {521--545},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a4/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - Majorants and uniqueness of series in the Franklin system
JO  - Matematičeskie zametki
PY  - 1996
SP  - 521
EP  - 545
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a4/
LA  - ru
ID  - MZM_1996_59_4_a4
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T Majorants and uniqueness of series in the Franklin system
%J Matematičeskie zametki
%D 1996
%P 521-545
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a4/
%G ru
%F MZM_1996_59_4_a4
G. G. Gevorkyan. Majorants and uniqueness of series in the Franklin system. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 521-545. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a4/