Majorants and uniqueness of series in the Franklin system
Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 521-545.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if a series in the Franklin system converges almost everywhere to a function $f(t)$ and the distribution function of the majorant of partial sums satisfies the condition $$ \operatorname{mes}\bigl\{t\in[0,1]:s(t)>\lambda\bigr\} =o\biggl(\frac 1\lambda\biggr) $$ as $\lambda\to\infty$, then this series is a Fourier series for Lebesgue integrable functions $f(t)$. In the general case the coefficients of the series are reconstructed by means of an $A$-integral.
@article{MZM_1996_59_4_a4,
     author = {G. G. Gevorkyan},
     title = {Majorants and uniqueness of series in the {Franklin} system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {521--545},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a4/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - Majorants and uniqueness of series in the Franklin system
JO  - Matematičeskie zametki
PY  - 1996
SP  - 521
EP  - 545
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a4/
LA  - ru
ID  - MZM_1996_59_4_a4
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T Majorants and uniqueness of series in the Franklin system
%J Matematičeskie zametki
%D 1996
%P 521-545
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a4/
%G ru
%F MZM_1996_59_4_a4
G. G. Gevorkyan. Majorants and uniqueness of series in the Franklin system. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 521-545. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a4/

[1] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | Zbl

[2] Gevorkyan G. G., “O edinstvennosti ryadov po sisteme Franklina”, Matem. zametki, 46:2 (1989), 51–58 | MR

[3] Gevorkyan G. G., “O ryadakh po sisteme Franklina”, Analisys Math., 16:2 (1990), 87–114 | DOI | MR | Zbl

[4] Aleksandrov A. B., “Ob $A$-integriruemosti granichnykh znachenii garmonicheskikh funktsii”, Matem. zametki, 30:1 (1981), 59–72 | MR | Zbl

[5] Gevorkyan G. G., “O edinstvennosti trigonometricheskikh ryadov”, Matem. sb., 180:11 (1989), 1462–1474 | Zbl

[6] Gevorkyan G. G., “O edinstvennosti trigonometricheskikh ryadov, summiruemykh metodom Rimana”, Dokl. AN SSSR, 313:6 (1990), 1302–1305 | Zbl

[7] Gevorkyan G. G., “O trigonometricheskikh ryadakh, summiruemykh metodom Rimana”, Matem. zametki, 52:3 (1992), 17–34 | MR | Zbl

[8] Gevorkyan G. G., “O edinstvennosti kratnykh trigonometricheskikh ryadov”, Matem. sb., 184:11 (1993), 93–130 | Zbl

[9] Ciesielski Z., “Propeties of the orthonormal Franklin system, II”, Studia Math., 27 (1966), 289–323 | MR | Zbl

[10] Gevorkyan G. G., “Neogranichennost operatora sdviga po sisteme Franklina v prostranstve $L_1$”, Matem. zametki, 38:4 (1985), 523–533 | MR | Zbl

[11] Gevorkyan G. G., “Nekotorye teoremy o bezuslovnoi skhodimosti i mazhorante ryadov Franklina i ikh primenenie k prostranstvam $\operatorname{Re}H_p$”, Tr. MIAN, 190, Nauka, M., 1989, 49–74 | MR

[12] Bochkarev S. V., “Metod usrednenii v teorii ortogonalnykh ryadov i nekotorye voprosy teorii bazisov”, Tr. MIAN, 146, Nauka, M., 1978, 3–87 | MR | Zbl

[13] Bochkarev S. V., “Suschestvovanie bazisov v prostranstve funktsii, analiticheskikh v kruge, i nekotorye svoistva sistemy Franklina”, Matem. sb., 95:1 (1974), 3–18 | Zbl

[14] Ciesielski Z., “Constructive function theory and spline systems”, Studia Math., 53 (1975), 277–301 | MR

[15] Balashov L. A., “Oboschennoe integrirovanie ryadov po sisteme Khaara”, Vsesoyuznaya shkola po teorii funktsii, Erevan, 1987, 3

[16] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961

[17] Gusman M., Differentsirovanie integralov v $\mathbb R^n$, Mir, M., 1978