Majorants and uniqueness of series in the Franklin system
Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 521-545
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if a series in the Franklin system converges almost everywhere to a function $f(t)$ and the distribution function of the majorant of partial sums satisfies the condition
$$
\operatorname{mes}\bigl\{t\in[0,1]:s(t)>\lambda\bigr\}
=o\biggl(\frac 1\lambda\biggr)
$$
as $\lambda\to\infty$, then this series is a Fourier series for Lebesgue integrable functions $f(t)$. In the general case the coefficients of the series are reconstructed by means of an $A$-integral.
@article{MZM_1996_59_4_a4,
author = {G. G. Gevorkyan},
title = {Majorants and uniqueness of series in the {Franklin} system},
journal = {Matemati\v{c}eskie zametki},
pages = {521--545},
publisher = {mathdoc},
volume = {59},
number = {4},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a4/}
}
G. G. Gevorkyan. Majorants and uniqueness of series in the Franklin system. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 521-545. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a4/