Singularities of 3-dimensional varieties admitting an ample effective divisor of Kodaira dimension zero
Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 618-626.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a normal threefold $X$ with an effective Cartier divisor $H$, which is a minimal model of Kodaira dimension zero, we prove that either $X$ is a generalized cone over $H$, or $X$ has quadruple singularities and $H$ is either a K3 surface, or an Enriques surface.
@article{MZM_1996_59_4_a12,
     author = {I. A. Cheltsov},
     title = {Singularities of 3-dimensional varieties admitting an ample effective divisor of {Kodaira} dimension zero},
     journal = {Matemati\v{c}eskie zametki},
     pages = {618--626},
     publisher = {mathdoc},
     volume = {59},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a12/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - Singularities of 3-dimensional varieties admitting an ample effective divisor of Kodaira dimension zero
JO  - Matematičeskie zametki
PY  - 1996
SP  - 618
EP  - 626
VL  - 59
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a12/
LA  - ru
ID  - MZM_1996_59_4_a12
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T Singularities of 3-dimensional varieties admitting an ample effective divisor of Kodaira dimension zero
%J Matematičeskie zametki
%D 1996
%P 618-626
%V 59
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a12/
%G ru
%F MZM_1996_59_4_a12
I. A. Cheltsov. Singularities of 3-dimensional varieties admitting an ample effective divisor of Kodaira dimension zero. Matematičeskie zametki, Tome 59 (1996) no. 4, pp. 618-626. http://geodesic.mathdoc.fr/item/MZM_1996_59_4_a12/

[1] Fano G., “Sopra alcune varieta algebriche a tre dimensioni avebti tutti i generi nulli”, Atti Congresso Bolonga, 4 (1931), 115–119

[2] Fano G., “Sulle varieta algebriche a tre dimensioni a curve-sezioni canoniche”, Mem. Acc. It., 8 (1937), 813–818

[3] Fano G., “Nuove riserche sulle varieta algebriche a tre dimensioni a curve-sezioni canoniche”, Comm. Dont. Ac. Sci., 11 (1947), 635–720 | MR | Zbl

[4] Fano G., “Sulle varrieta algebriche a tre dimensionile le cui sezioni iperpiane sono superfici di genere zero e bigenere uno”, Mem. Soc. It. d. Scienze, 24 (1938), 44–66

[5] Iskovskikh V. A., “Trekhmernye mnogoobraziya Fano, I”, Izv. AN SSSR. Ser. matem., 41 (1977), 516–562 | MR | Zbl

[6] Iskovskikh V. A., “Trekhmernye mnogoobraziya Fano, II”, Izv. AN SSSR Ser. matem., 42 (1978), 504–549 | MR

[7] Iskovskikh V. A., Lektsii po trekhmernym algebraicheskim mnogoobraziyam. Mnogoobraziya Fano, Preprint, MGU, M., 1988

[8] Mori S., Mukai S., “Classification of Fano 3-folds with $b_{2}\ge 2$”, Manuskripta Math., 36 (1981), 147–162 | DOI | MR | Zbl

[9] Mori S., Mukai S., “On Fano 3-folds with $b_{2}\ge 2$”, Adv. Stud. Pure Math., 1 (1983), 101–129 | Zbl

[10] Mori S., Mukai S., “Classification of Fano 3-folds with $b_{2}\ge 2$, I”, Algebraic and Topological Theries, 1985, 496–548

[11] Conte A., Murre J. P., “Algebraic varieties of dimension three whose hyperplane sections are Enriques surfaces”, Ann. Souola Norm. Sup. de Pisa, 12 (1985), 43–80 | MR | Zbl

[12] Beauville A., Surfaces Algebriques Complexes, Asterisque, 54 | Zbl

[13] Prokhorov Yu. G., Zametki o trekhmernykh mnogoobraziyakh s giperploskimi secheniyami – poverkhnostyami Enrikvesa, Preprint, MGU, M., 1994

[14] Reid M., Projective morphism according to Kawamata, Preprint, University of Warwick, 1983 | Zbl

[15] Kawamata Y., Matsuda K., Matsuki K., “Introduction to the minimal model problem”, Adv. Stud. Pure Math., 10 (1987), 283–360 | MR | Zbl

[16] Hartshorne R., “Stable reflexive sheaves”, Math. Ann., 254 (1980), 121–176 | DOI | MR | Zbl

[17] Mori S., “Flip theorem and the existence of minimal models for 3-folds”, J. Amer. Math. Soc., 1 (1988), 117–253 | DOI | MR | Zbl

[18] Kollár J. et al., Flips and abundance for algebraic threefolds, Asterisque, 211, 1992

[19] Reid M., “Young person's guide to canonical singularities”, Proc. Sympos. Pure Math., 1985, 345–414