On~the countable definability of sets
Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 382-395.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Q$ be a connected set in $\mathbb C^p$ . Denote by $D[Q]$ the set of all domains containing $Q$, and let $W(Q)$ be the set of all convex domains from $D[Q]$. We present tests for classes $D[Q]$ and $W(Q)$ (in the case when $Q$ is convex for the last one) to have a countable basis. The results are expressed in terms of properties of the boundary $\operatorname{Fr}Q$ of the set $Q$.
@article{MZM_1996_59_3_a6,
     author = {Yu. F. Korobeinik},
     title = {On~the countable definability of sets},
     journal = {Matemati\v{c}eskie zametki},
     pages = {382--395},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a6/}
}
TY  - JOUR
AU  - Yu. F. Korobeinik
TI  - On~the countable definability of sets
JO  - Matematičeskie zametki
PY  - 1996
SP  - 382
EP  - 395
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a6/
LA  - ru
ID  - MZM_1996_59_3_a6
ER  - 
%0 Journal Article
%A Yu. F. Korobeinik
%T On~the countable definability of sets
%J Matematičeskie zametki
%D 1996
%P 382-395
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a6/
%G ru
%F MZM_1996_59_3_a6
Yu. F. Korobeinik. On~the countable definability of sets. Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 382-395. http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a6/

[1] Martineau A., “Sur la topologie des espaces de fonctions holomorphes”, Math. Ann., 163:1 (1966), 62–83 | DOI | MR

[2] Khavin V. P., “Prostranstva analiticheskikh funktsii”, Itogi nauki i tekhn. Matem. analiz 1964, VINITI, M., 1966, 76–164 | MR

[3] Floret K., “Some aspects of the theory of locally convex inductive limits”, Functional Analysis: Surveys and recent results, V. II, eds. K.-D. Bierstedt, B. Fuchssteiner, North-Holland Publishing Company, 1980, 205–237 | MR | Zbl

[4] Bierstedt K. D., “An introduction to locally convex inductive limits”, Functional analysis and its applications, World Science for 1986 (Vice 25 Aug.–20 Sep. 1986), ICRAM Lecture Notes, 36–133

[5] Edvards R., Funktsionalnyi analiz, Mir, M., 1969

[6] Kuratovskii K., Topologiya, T. 1, Mir, M., 1969