Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1996_59_3_a3, author = {V. V. Volchkov}, title = {The final version of the mean value theorem for harmonic functions}, journal = {Matemati\v{c}eskie zametki}, pages = {351--358}, publisher = {mathdoc}, volume = {59}, number = {3}, year = {1996}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a3/} }
V. V. Volchkov. The final version of the mean value theorem for harmonic functions. Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 351-358. http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a3/
[1] Flatto L., “The converse of Gauss's theorem for harmonic functions”, J. Diff. Equat., 1:4 (1965), 483–490 | DOI | MR | Zbl
[2] Zalcman L., “Offbeat integral geometry”, Amer. Math. Monthly, 87:3 (1980), 161–175 | DOI | MR | Zbl
[3] Zalcman L., “Mean values and differential equations”, Isr. J. Math., 14 (1973), 339–352 | DOI | MR | Zbl
[4] Berenstein C. A., Zalcman L., “Pompeiu's problem on symmetric spaces”, Comment. Math. Helv., 55 (1980), 593–621 | DOI | MR | Zbl
[5] Berenstein C. A., Gay R., “A local version of the two-circler theorem”, Isr. J. Math., 55 (1986), 267–288 | DOI | MR | Zbl
[6] Volchkov V. V., “Novye teoremy o dvukh radiusakh v teorii garmonicheskikh funktsii”, Izv. RAN. Ser. matem., 58:1 (1994), 41–49 | MR
[7] Berenstein K. A., Struppa D., “Kompleksnyi analiz i uravneniya v svertkakh”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 54, VINITI, M., 1989, 5–111 | MR
[8] Vilenkin N. Ya., Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | Zbl
[9] Korenev B. G., Vvedenie v teoriyu besselevykh funktsii, Nauka, M., 1971 | Zbl
[10] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964
[11] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl
[12] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987
[13] Leng S., $\operatorname{SL}_2(\mathbb R)$, Mir, M., 1977