The final version of the mean value theorem for harmonic functions
Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 351-358

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct examples of nonharmonic functions satisfying the mean value equation for some set of spheres. These results permit us to obtain the two-circle theorem in its definitive form.
@article{MZM_1996_59_3_a3,
     author = {V. V. Volchkov},
     title = {The final version of the mean value theorem for harmonic functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {351--358},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a3/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - The final version of the mean value theorem for harmonic functions
JO  - Matematičeskie zametki
PY  - 1996
SP  - 351
EP  - 358
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a3/
LA  - ru
ID  - MZM_1996_59_3_a3
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T The final version of the mean value theorem for harmonic functions
%J Matematičeskie zametki
%D 1996
%P 351-358
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a3/
%G ru
%F MZM_1996_59_3_a3
V. V. Volchkov. The final version of the mean value theorem for harmonic functions. Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 351-358. http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a3/