Use of the Lagrange method in nonlinear analysis
Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 334-342.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the spectrum of a nonlinear system and its relation to ellipsoid transform widths are studied.
@article{MZM_1996_59_3_a1,
     author = {A. P. Buslaev},
     title = {Use of the {Lagrange} method in nonlinear analysis},
     journal = {Matemati\v{c}eskie zametki},
     pages = {334--342},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a1/}
}
TY  - JOUR
AU  - A. P. Buslaev
TI  - Use of the Lagrange method in nonlinear analysis
JO  - Matematičeskie zametki
PY  - 1996
SP  - 334
EP  - 342
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a1/
LA  - ru
ID  - MZM_1996_59_3_a1
ER  - 
%0 Journal Article
%A A. P. Buslaev
%T Use of the Lagrange method in nonlinear analysis
%J Matematičeskie zametki
%D 1996
%P 334-342
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a1/
%G ru
%F MZM_1996_59_3_a1
A. P. Buslaev. Use of the Lagrange method in nonlinear analysis. Matematičeskie zametki, Tome 59 (1996) no. 3, pp. 334-342. http://geodesic.mathdoc.fr/item/MZM_1996_59_3_a1/

[1] Gantmakher F. R., Teoriya matrits, Nauka, M., 1987

[2] Gantmakher F. R., Krein M. G., Ostsillyatsionnye matritsy, yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M., 1953

[3] Tikhomirov V. M., Vypuklyi analiz. Teoriya priblizhenii, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 14, VINITI, M., 1987

[4] Pinkus A., “Some extremal problems for strictly totally positive matrices”, Linear Algebra and its Appl., 64 (1985), 141–156 | DOI | MR | Zbl

[5] Buslaev A. P., “O variatsionnom opisanii spektra vpolne polozhitelnykh matrits i ekstremalnykh zadachakh teorii priblizhenii”, Matem. zametki, 47:1 (1990), 39–46 | MR | Zbl

[6] Lagrange G. L., Eurves, V. 2, Gauthier-Villars, Paris, 1868

[7] Oben Zh. P., Ekland I., Prikladnoi nelineinyi analiz, Mir, M., 1988

[8] Lyusternik L. A., “Topologicheskie osnovy obschei teorii sobstvennykh znachenii”, UMN, 25:4(154) (1970), 19–22 | MR | Zbl

[9] Lyusternik L. A., “Nekotorye voprosy nelineinogo funktsionalnogo analiza”, UMN, 11:6 (72) (1956), 145–168 | MR | Zbl

[10] Seiranyan A. P., “Ob odnoi zadache Lagranzha”, Izv. AN SSSR. Ser. mekhanika tverdogo tela, 19:2 (1984), 101–111 | MR

[11] Olkhoff N., Optimalnoe proektirovanie konstruktsii, Mir, M., 1981

[12] Egorov Yu. V., Kondratev V. A., “Ob otsenkakh pervogo sobstvennogo znacheniya zadachi Shturma–Liuvillya”, UMN, 39:2 (236) (1984), 151–152 | MR | Zbl

[13] Keller J., “The shape of the strongest column”, Arch. Rat. Mech. Anal., 1960, no. 5, 275–285 | DOI | MR

[14] Tadjbaksh I., Keller J., “Strongest columns and isoperimetric inequalities for eigenvalues”, J. Appl. Mech., 29 (1962), 159–164 | MR

[15] Cox S. J., “The Shape of the Ideal Column”, The Mathematical Intelligenger, 14:1 (1992), 16–24 | DOI | MR | Zbl