Equilibrium states with incomplete supports and periodic trajectories
Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 230-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

The relationship between analytic properties of the Artin–Mazur–Ruelle zeta function and the structure of the state of equilibrium states for a topological Markov chain is studied for a class of functions constant on a system of cylinder sets. The convergence of discrete invariant measures to equilibrium states is studied. Special attention is paid to the case in which the uniqueness condition is violated. Dynamic Ruelle–Smale zeta functions are considered, as well as the distribution laws for the number of periodic trajectories of special flows corresponding to topological Markov chains and to positive functions of this class.
@article{MZM_1996_59_2_a8,
     author = {S. V. Savchenko},
     title = {Equilibrium states with incomplete supports and periodic trajectories},
     journal = {Matemati\v{c}eskie zametki},
     pages = {230--253},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a8/}
}
TY  - JOUR
AU  - S. V. Savchenko
TI  - Equilibrium states with incomplete supports and periodic trajectories
JO  - Matematičeskie zametki
PY  - 1996
SP  - 230
EP  - 253
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a8/
LA  - ru
ID  - MZM_1996_59_2_a8
ER  - 
%0 Journal Article
%A S. V. Savchenko
%T Equilibrium states with incomplete supports and periodic trajectories
%J Matematičeskie zametki
%D 1996
%P 230-253
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a8/
%G ru
%F MZM_1996_59_2_a8
S. V. Savchenko. Equilibrium states with incomplete supports and periodic trajectories. Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 230-253. http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a8/

[1] Bowen R., “Equlibrium States and Ergodic Theory of Anosov diffeomorphisms”, Lecture Notes in Math., 470, Springer, Berlin, 1975 | MR | Zbl

[2] Ruelle D., “Statistical mechanics of a one-dimensional lattice gas”, Comm. Math. Phys., 9 (1968), 267–278 | DOI | MR | Zbl

[3] Ruelle D., Thermodynamic formalism, Addison-Wesley, Reading, 1978 | Zbl

[4] Hofbauer F., “Examples for the nonuniqueness of the equilibrium state”, Trans. Amer. Math. Soc., 228 (1977), 223–241 | DOI | MR | Zbl

[5] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989

[6] Gurevich B. M., “A variational characterization of one-dimensional countable state Gibbs random fields”, Wahrscheinlichkeitstheorie verw. Gebiete, 68 (1984), 205–242 | DOI | MR | Zbl

[7] Takahashi Y., “Shift with orbit basis and realization of one dimensional maps”, Osaka J. Math., 20 (1983), 599–629 | MR | Zbl

[8] Savchenko S. V., “Dzeta-funktsiya i gibbsovskie mery”, UMN, 48:1 (1993), 181–182 | MR | Zbl

[9] Bowen R., Lanford O. E., “Zeta functions of restrictions of the shift transformation”, Proc. Sympos. Pure Math., 14, 1968, 43–49

[10] Ruelle D., “Statistical mechanics on a compact set with $\mathbb Z^\nu$-action satisfying expansiveness and specification”, Bull. Amer. Math. Soc., 78 (1972), 988–991 ; Trans. Amer. Math. Soc., 185 (1973), 237–251 | DOI | MR | Zbl | DOI | MR

[11] Chzhun-Kai-lai, Odnorodnye tsepi Markova, Mir, M., 1964

[12] Gallavotti G., “Funzioni zeta ed insiemi basilari”, Accad. Lincei. Rend. Sc. fis. mat. e nat., 61 (1976), 309–317 | MR

[13] Hardy G. H., Divergent series, Oxford University Press, Oxford, 1949 | Zbl

[14] Abramov L. M., “Ob entropii potoka”, Dokl. AN SSSR, 128 (1959), 873–875 | MR | Zbl

[15] Ruelle D., “Generalized zeta-functions for axiom A basic sets”, Bull. Amer. Math. Soc., 82 (1976), 153–156 | DOI | MR | Zbl

[16] Parry W., Policott M., Zeta functions and the periodic orbit structure of hyperbolic dynamics, Asterisque, 187–188, 1990