Uniform boundedness in $L^p$ $(p=p(x))$ of some families of convolution operators
Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 291-302.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that a measurable $2\pi$-periodic essentially bounded function (the kernel) $k_\lambda=k_\lambda(x)$ is given for any real $\lambda\ge1$. We consider the following linear convolution operator in $L_p$: $$ \mathscr K_\lambda=\mathscr K_\lambda f =(\mathscr K_\lambda f)(x)=\int_{-\pi}^\pi f(t)k_\lambda(t-x)\,dt. $$ Uniform boundedness of the family of operators $\{\mathscr K_\lambda\}_{\lambda\ge1}$ is studied. Conditions on the variable exponent $p=p(x)$ and on the kernel $k_\lambda$, that ensure the uniform boundedness of the operator family $\{\mathscr K_\lambda\}_{\lambda\ge1}$ in $L_p$ are obtained. The condition on the exponent $p=p(x)$ is given in its final form.
@article{MZM_1996_59_2_a14,
     author = {I. I. Sharapudinov},
     title = {Uniform boundedness in $L^p$ $(p=p(x))$ of some families of convolution operators},
     journal = {Matemati\v{c}eskie zametki},
     pages = {291--302},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a14/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Uniform boundedness in $L^p$ $(p=p(x))$ of some families of convolution operators
JO  - Matematičeskie zametki
PY  - 1996
SP  - 291
EP  - 302
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a14/
LA  - ru
ID  - MZM_1996_59_2_a14
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Uniform boundedness in $L^p$ $(p=p(x))$ of some families of convolution operators
%J Matematičeskie zametki
%D 1996
%P 291-302
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a14/
%G ru
%F MZM_1996_59_2_a14
I. I. Sharapudinov. Uniform boundedness in $L^p$ $(p=p(x))$ of some families of convolution operators. Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 291-302. http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a14/

[1] Sharapudinov I. I., “O topologii prostranstva $L^{p(t)}([0,1])$”, Matem. zametki, 26:4 (1979), 613–632 | MR | Zbl

[2] Sharapudinov I. I., “O bazisnosti sistemy Khaara v prostranstve $L^{p(t)}([0,1])$ i printsipe lokalizatsii v srednem”, Matem. sb., 130:2 (1986), 275–283 | MR

[3] Zigmund A., Trigonometricheskie ryady, Nauka, M., 1965