The variety of solutions of the singular generalized Cauchy–Riemann System
Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 278-283
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that the equation $$ 2\overline z\partial_{\overline z}w-\bigl(b(\varphi)+B(z)\bigr)\overline w=0,\quad z\in G, $$ in which $B(z)\in C^\infty(G)$, $B_0(z)=O(|z|)^\alpha)$, $\alpha>0$, $z\to0$, and $$ b(\varphi)=\sum_{k=-m_0}^mb_ke^{ik\varphi}, $$ does not have nontrivial solutions in the class $C^\infty(G)$.
@article{MZM_1996_59_2_a12,
author = {Z. D. Usmanov},
title = {The variety of solutions of the singular generalized {Cauchy{\textendash}Riemann} {System}},
journal = {Matemati\v{c}eskie zametki},
pages = {278--283},
year = {1996},
volume = {59},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a12/}
}
Z. D. Usmanov. The variety of solutions of the singular generalized Cauchy–Riemann System. Matematičeskie zametki, Tome 59 (1996) no. 2, pp. 278-283. http://geodesic.mathdoc.fr/item/MZM_1996_59_2_a12/
[1] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959
[2] Usmanov Z. D., Obobschennye sistemy Koshi–Rimana s singulyarnoi tochkoi, TadzhikNIINTI, Dushanbe, 1993