Exact bounds for simultaneous approximation of functions of two variables and their derivatives by bilinear splines
Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 142-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find the exact value of the expression \begin{multline}\quad \varepsilon^{(l,q)}\bigl(W^{(r,s)}H^{\omega_1,\omega_2}(G)\bigr)=\sup\bigl\{\|f^{(l,q)}(\cdot,\cdot) -S_{1,1}^{(l,q)}(f;\cdot,\cdot)\|_{C(G)}: f\in W^{(r,s)}H^{\omega_1,\omega_2}(G)\bigr\}, \end{multline} where $\varphi^{(l,q)}(x,y)=\partial^{1+q}\varphi/\partial x^l\partial y^q$ ($l,q=0,1$, $1\le l+q\le2$) and $S_{1,1}(f;x,y)$ is a bilinear spline interpolating $f(x,y)$ in the nodes of the grid $\Delta_{mn}=\Delta_m^x\times\Delta_n^y$ with $\Delta_m^x$: $x_i=i/m$ ($i=\overline{0,m}$), $\Delta_n^y$: $y_j=j/n$ ($j=\overline{0,n}$). Here $W^{(r,s)}H^{\omega_1,\omega_2}(G)$ is the class of functions $f(x,y)$ with continuous derivatives $f^{(r,s)}(x,y)$ ($r,s=0,1$, $1\le r+s\le2$) on the square $G=[0,1]\times[0,1]$ and with the modulus of continuity satisfying the inequality ($\omega(f^{(r,s)};t,\tau)\le\omega_1(t)+\omega_2(\tau)$, where $\omega_1(t)$ and $\omega_2(t)$ are the given moduli of continuity.
@article{MZM_1996_59_1_a12,
     author = {M. Sh. Shabozov},
     title = {Exact bounds for simultaneous approximation of functions of two variables and their derivatives by bilinear splines},
     journal = {Matemati\v{c}eskie zametki},
     pages = {142--152},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a12/}
}
TY  - JOUR
AU  - M. Sh. Shabozov
TI  - Exact bounds for simultaneous approximation of functions of two variables and their derivatives by bilinear splines
JO  - Matematičeskie zametki
PY  - 1996
SP  - 142
EP  - 152
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a12/
LA  - ru
ID  - MZM_1996_59_1_a12
ER  - 
%0 Journal Article
%A M. Sh. Shabozov
%T Exact bounds for simultaneous approximation of functions of two variables and their derivatives by bilinear splines
%J Matematičeskie zametki
%D 1996
%P 142-152
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a12/
%G ru
%F MZM_1996_59_1_a12
M. Sh. Shabozov. Exact bounds for simultaneous approximation of functions of two variables and their derivatives by bilinear splines. Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 142-152. http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a12/

[1] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984

[2] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splainfunktsii, Nauka, M., 1980

[3] Vakarchuk S. B., “K interpolyatsii bilineinymi splainami”, Matem. zametki, 47:5 (1990), 26–29 | MR

[4] Alberg Dzh., Nilson E., Uolsh Dzh., Teoriya splainov i ee prilozheniya, Mir, M., 1972 | Zbl

[5] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976 | Zbl

[6] Storchai V. F., “Priblizhenie funktsii dvukh peremennykh mnogogrannymi funktsiyami v ravnomernoi metrike”, Izv. vuzov. Matem., 1973, no. 8, 84–88

[7] Malozemov V. N., “Ob otklonenii lomanykh”, Vestn. LGU. Matem., mekh., astron., 1966, no. 7, 150–153 | MR | Zbl

[8] Korneichuk N. P., Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976

[9] Stepanets A. I., Ravnomernye priblizheniya trigonometricheskimi polinomami, Naukova dumka, Kiev, 1981

[10] Malozemov V. N., “K poligonalnoi interpolyatsii”, Matem. zametki, 1:5 (1967), 537–540 | MR | Zbl

[11] Mikeladze Sh. E., Chislennye metody matematicheskogo analiza, Gostekhizdat, M., 1953