Spectral properties of operators of the theory of harmonic potential
Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify the points of the spectrum of the operators $B$ and $B^*$ of the theory of harmonic potential on a smooth closed surface $S\subset\mathbb R^3$. These operators give the direct value on $S$ of the normal derivative of the simple layer potential and the double layer potential. We show that zero can belong to the point spectrum of both operators in $L_2(S)$. We prove that the half-interval $[-2,2)$ is densely filled by spectrum points of the operators for a varying surface; this is a generalization of the classical result of Plemelj. We obtain a series of new spectral properties of the operators $B$ and $B^*$ on ellipsoidal surfaces.
@article{MZM_1996_59_1_a0,
     author = {J. Ahner and V. V. Dyakin and V. Ya. Raevskii and S. Ritter},
     title = {Spectral properties of operators of the theory of harmonic potential},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a0/}
}
TY  - JOUR
AU  - J. Ahner
AU  - V. V. Dyakin
AU  - V. Ya. Raevskii
AU  - S. Ritter
TI  - Spectral properties of operators of the theory of harmonic potential
JO  - Matematičeskie zametki
PY  - 1996
SP  - 3
EP  - 11
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a0/
LA  - ru
ID  - MZM_1996_59_1_a0
ER  - 
%0 Journal Article
%A J. Ahner
%A V. V. Dyakin
%A V. Ya. Raevskii
%A S. Ritter
%T Spectral properties of operators of the theory of harmonic potential
%J Matematičeskie zametki
%D 1996
%P 3-11
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a0/
%G ru
%F MZM_1996_59_1_a0
J. Ahner; V. V. Dyakin; V. Ya. Raevskii; S. Ritter. Spectral properties of operators of the theory of harmonic potential. Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a0/

[1] Gyunter N. M., Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, Gostekhizdat, M., 1953

[2] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977

[3] Smirnov V. I., Kurs vysshei matematiki, T. 4. Ch. 2, Nauka, M., 1981

[4] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964

[5] Dyakin V. V., Raevskii V. Ya., “O svoistvakh operatorov klassicheskoi teorii potentsiala”, Matem. zametki, 45:2 (1989), 138–140 | MR | Zbl

[6] Agranovich M. S., Dopolnenie k kn.: Voitovich N. N., Katsenelbaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977 | Zbl

[7] Mazya V. G., Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 27, VINITI, M., 1988, 131–228 | MR

[8] Ahner J. F., “Some spectral properties of an integral operator in potential theory”, Proc. Edinburgh Math. Soc., 29:3 (1986), 405–411 | DOI | MR | Zbl

[9] Ahner J. F., Dyakin V. V., Raevskii V. Ya., “New spectral results for the electrostatic integral operator”, J. Math. Anal. Appl., 185:2 (1994), 391–402 | DOI | MR | Zbl

[10] Ahner J. F., Arenstorf R. F., “On the eigenvalues of the electrostatic integral operator”, J. Math. Anal. Appl., 117:1 (1986), 187–197 | DOI | MR | Zbl

[11] Verchota G., “Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domain”, J. Funct. Anal., 59:3 (1984), 572–611 | DOI | MR | Zbl

[12] Belykh V. N., “K probleme chislennogo resheniya zadachi Dirikhle garmonicheskim potentsialom prostogo sloya”, Dokl. RAN, 329:4 (1993), 392–395 | MR | Zbl

[13] Dieudonne J., “Quasi-hermitian operators”, Proc. of the International Symposium on Linear Spaces, Oxford–London–New York–Jerusalem, 1961, 115–122 | MR | Zbl

[14] Erofeenko V. T., Teoremy slozheniya, Nauka i tekhnika, Minsk, 1989 | Zbl

[15] Ahner J. F., “On the eigenvalues of the electrostatic integral operator, II”, J. Math. Anal. Appl., 181:2 (1994), 328–334 | DOI | MR | Zbl

[16] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1973

[17] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979

[18] Plemelj J., “Potentialtheoretische Untersuchungen”, Preisschriften der Fürstlich Jablonowskischen Gesellschaft zu Leipzig, Teubner-Verlag, Leipzig, 1911

[19] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Dopolnitelnye glavy, Nauka, M., 1986

[20] Olver F., Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Nauka, M., 1978

[21] Zabreiko P. P., Koshelev A. I., Krasnoselskii M. A., Mikhlin S. G., Rakovschik L. S., Stetsenko V. Ya., Integralnye uravneniya, Nauka, M., 1968

[22] Ritter St., The spectrum of the electrostatic integral operator for an ellipsoid, Erscheint in “Methoden und Verfahren der Mathematischen Physik”. Proceeding-Band der gleichnamigen Konferenz vom 12.–18.12.93 in Oberwolfach. Preprint