Spectral properties of operators of the theory of harmonic potential
Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 3-11

Voir la notice de l'article provenant de la source Math-Net.Ru

We classify the points of the spectrum of the operators $B$ and $B^*$ of the theory of harmonic potential on a smooth closed surface $S\subset\mathbb R^3$. These operators give the direct value on $S$ of the normal derivative of the simple layer potential and the double layer potential. We show that zero can belong to the point spectrum of both operators in $L_2(S)$. We prove that the half-interval $[-2,2)$ is densely filled by spectrum points of the operators for a varying surface; this is a generalization of the classical result of Plemelj. We obtain a series of new spectral properties of the operators $B$ and $B^*$ on ellipsoidal surfaces.
@article{MZM_1996_59_1_a0,
     author = {J. Ahner and V. V. Dyakin and V. Ya. Raevskii and S. Ritter},
     title = {Spectral properties of operators of the theory of harmonic potential},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--11},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a0/}
}
TY  - JOUR
AU  - J. Ahner
AU  - V. V. Dyakin
AU  - V. Ya. Raevskii
AU  - S. Ritter
TI  - Spectral properties of operators of the theory of harmonic potential
JO  - Matematičeskie zametki
PY  - 1996
SP  - 3
EP  - 11
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a0/
LA  - ru
ID  - MZM_1996_59_1_a0
ER  - 
%0 Journal Article
%A J. Ahner
%A V. V. Dyakin
%A V. Ya. Raevskii
%A S. Ritter
%T Spectral properties of operators of the theory of harmonic potential
%J Matematičeskie zametki
%D 1996
%P 3-11
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a0/
%G ru
%F MZM_1996_59_1_a0
J. Ahner; V. V. Dyakin; V. Ya. Raevskii; S. Ritter. Spectral properties of operators of the theory of harmonic potential. Matematičeskie zametki, Tome 59 (1996) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/MZM_1996_59_1_a0/