Keldysh--Sedov formulas and differentiability with respect to the parameter of families of univalent functions in $n$-connected domains
Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 878-889.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce families of functions $F_j(w,t)$ mapping $(n+1)$-connected domains onto circular domains in the $z$-plane. Denote by $\Phi_j(z,t)$ the families of functions inverse to $F_j(w,t)$. Theorems 1-?4 treat differentiability properties of these families with respect to $t$ at a point $t=t_0$. We present formulas for the first derivative with respect to $t$. Corollaries of the theorems obtained are given. As a particular case, we deduce the theorem due to Kufarev for the disk and the theorem of Kufarev and Genina (Semukhina) for the annulus.
@article{MZM_1995_58_6_a7,
     author = {A. S. Sorokin},
     title = {Keldysh--Sedov formulas and differentiability with respect to the parameter of families of univalent functions in $n$-connected domains},
     journal = {Matemati\v{c}eskie zametki},
     pages = {878--889},
     publisher = {mathdoc},
     volume = {58},
     number = {6},
     year = {1995},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a7/}
}
TY  - JOUR
AU  - A. S. Sorokin
TI  - Keldysh--Sedov formulas and differentiability with respect to the parameter of families of univalent functions in $n$-connected domains
JO  - Matematičeskie zametki
PY  - 1995
SP  - 878
EP  - 889
VL  - 58
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a7/
LA  - ru
ID  - MZM_1995_58_6_a7
ER  - 
%0 Journal Article
%A A. S. Sorokin
%T Keldysh--Sedov formulas and differentiability with respect to the parameter of families of univalent functions in $n$-connected domains
%J Matematičeskie zametki
%D 1995
%P 878-889
%V 58
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a7/
%G ru
%F MZM_1995_58_6_a7
A. S. Sorokin. Keldysh--Sedov formulas and differentiability with respect to the parameter of families of univalent functions in $n$-connected domains. Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 878-889. http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a7/

[1] Sorokin A. S., “Variatsionnyi metod Goluzina–Kufareva i formuly Keldysha–Sedova”, DAN SSSR, 308:2 (1989), 273–277

[2] Sorokin A. S., “Zadacha Keldysha–Sedova dlya mnogosvyaznykh krugovykh oblastei”, DAN SSSR, 293:1 (1987), 41–44 | MR | Zbl

[3] Sorokin A. S., “Zadacha Keldysha–Sedova dlya mnogosvyaznykh krugovykh oblastei”, DAN SSSR, 286:4 (1987), 801–804

[4] Kufarev P. P., “Ob odnoparametricheskikh semeistvakh analiticheskikh funktsii”, Matem. sb., 13(55):1 (1943), 87–118 | MR | Zbl

[5] Kufarev P. P., “Ob odnom svoistve ekstremalnykh oblastei zadachi koeffitsientov”, DAN SSSR, 97:4 (1954), 391–393 | MR | Zbl

[6] Kufarev P. P., Genina (Semukhina) N. V., “O rasprostranenii variatsionnogo metoda G. M. Goluzina na dvusvyaznye oblasti”, DAN SSSR, 107:4 (1956), 505–507 | MR | Zbl

[7] Genina N. V., “O rasprostranenii variatsionnogo metoda G. M. Goluzina na dvusvyaznye oblasti”, Uch. zap. un-ta, no. 144, TGU, Tomsk, 1962, 226–240

[8] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966

[9] Aleksandrov I. A., Sorokin A. S., “O rasprostranenii variatsionnogo metoda Goluzina–Kufareva na mnogosvyaznye oblasti”, DAN SSSR, 1967, no. 6, 1207–1210 | Zbl