Keldysh--Sedov formulas and differentiability with respect to the parameter of families of univalent functions in $n$-connected domains
Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 878-889
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce families of functions $F_j(w,t)$ mapping $(n+1)$-connected domains onto circular domains in the $z$-plane. Denote by $\Phi_j(z,t)$ the families of functions inverse to $F_j(w,t)$. Theorems 1-?4 treat differentiability properties of these families with respect to $t$ at a point $t=t_0$. We present formulas for the first derivative with respect to $t$. Corollaries of the theorems obtained are given. As a particular case, we deduce the theorem due to Kufarev for the disk and the theorem of Kufarev and Genina (Semukhina) for the annulus.
@article{MZM_1995_58_6_a7,
author = {A. S. Sorokin},
title = {Keldysh--Sedov formulas and differentiability with respect to the parameter of families of univalent functions in $n$-connected domains},
journal = {Matemati\v{c}eskie zametki},
pages = {878--889},
publisher = {mathdoc},
volume = {58},
number = {6},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a7/}
}
TY - JOUR AU - A. S. Sorokin TI - Keldysh--Sedov formulas and differentiability with respect to the parameter of families of univalent functions in $n$-connected domains JO - Matematičeskie zametki PY - 1995 SP - 878 EP - 889 VL - 58 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a7/ LA - ru ID - MZM_1995_58_6_a7 ER -
%0 Journal Article %A A. S. Sorokin %T Keldysh--Sedov formulas and differentiability with respect to the parameter of families of univalent functions in $n$-connected domains %J Matematičeskie zametki %D 1995 %P 878-889 %V 58 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a7/ %G ru %F MZM_1995_58_6_a7
A. S. Sorokin. Keldysh--Sedov formulas and differentiability with respect to the parameter of families of univalent functions in $n$-connected domains. Matematičeskie zametki, Tome 58 (1995) no. 6, pp. 878-889. http://geodesic.mathdoc.fr/item/MZM_1995_58_6_a7/